“Yes!”: Using Tutor and Sensor Data to Predict Moments of Delight during Instructional Activities

  • Kasia Muldner
  • Winslow Burleson
  • Kurt VanLehn
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6075)

Abstract

A long standing challenge for intelligent tutoring system (ITS) designers and educators alike is how to encourage students to take pleasure and interest in learning activities. In this paper, we present findings from a user study involving students interacting with an ITS, focusing on when students express excitement, what we dub “yes!” moments. These findings include an empirically-based user model that relies on both interaction and physiological sensor features to predict “yes!” events; here we describe this model, its validation, and initial indicators of its importance for understanding and fostering student interest.

Keywords

interest motivation empirically-based model sensing devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Reeve, J.: The Interest-Enjoyment Distinction in Interest Motivation. Motivation and Emotion 13, 83–103 (1989)CrossRefGoogle Scholar
  2. 2.
    Isen, A., Reeve, J.: The Influence of Positive Affect on Intrinsic and Extrinsic Motivation: Facilitating Enjoyment of Play, Responsible Work Behavior, and Self-Control. Motivation and Emotion 29(4), 297–325 (2005)CrossRefGoogle Scholar
  3. 3.
    Hidi, S.: Interest and its Contribution as a Mental Resource for Learning. Rev. of Ed. Research 60(4), 549–571 (1990)Google Scholar
  4. 4.
    Isen, A., Daubman, K., Nowicki, G.: Positive Affect Facilitates Creative Problem Solving. J. of Personality and Social Psychology 52, 1122–1131 (1987)CrossRefGoogle Scholar
  5. 5.
    Lepper, M.: Motivational Considerations in the Study of Instruction. Cognition and Instruction 5(4), 289–309 (1988)CrossRefGoogle Scholar
  6. 6.
    Hidi, S., Renninger, A.: The Four-Phase Model of Interest Development. Educational Psychologist 41(2), 559–575 (2006)CrossRefGoogle Scholar
  7. 7.
    Deci, E., Koestner, R., Ryan, R.: Extrinsic Rewards and Intrinsic Motivation in Education: Reconsidered Again. Rev. of Ed. Research 71, 1–27 (2001)CrossRefGoogle Scholar
  8. 8.
    Baker, R., D’Mello, S., Rodrigo, M., Graesser, A.: Better to Be Frustrated Than Bored: The Incidence, Persistence, and Impact of Learners’ Cognitive-Affective States During Interactions with Three Different Computer-Based Learning Environments. Int. J. of Human-Computer Studies (in press)Google Scholar
  9. 9.
    Boyer, K., Phillips, R., Wallis, M., Vouk, M., Lester, J.: Balancing Cognitive and Motivational Scaffolding in Tutorial Dialogue. In: Woolf, B.P., Aïmeur, E., Nkambou, R., Lajoie, S. (eds.) ITS 2008. LNCS, vol. 5091, pp. 239–249. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Lepper, M., Malone, T.: Intrinsic Motivation and Instructional Effectiveness in Computer-Based Education. In: Snow, R., Farr, M. (eds.) Aptitude, Learning and Instruction, vol. 3, pp. 255–296. Erlbaum, Hillsdale (1987)Google Scholar
  11. 11.
    Lepper, M., Woolverton, M., Mumme, D., Gurtner, J.: Motivational Techniques of Expert Human Tutors: Lessons for the Design of Computer-Based Tutors. In: Lajoie, S., Derry, S. (eds.) Computers as Cognitive Tools, pp. 75–105. Lawrence Erlbaum Associates, Hillisdale (1993)Google Scholar
  12. 12.
    Henderlong, J., Lepper, M.: The Effects of Praise on Children’s Intrinsic Motivation: A Synthesis and Review. Psychological Bulletin 128(5), 774–795 (2002)CrossRefGoogle Scholar
  13. 13.
    Chi, M., VanLehn, K., Litman, D., Jordan, P.: Inducing Effective Pedagogical Strategies Using Learning Context Features. In: Proc. of the 18th Int. Conference on User Modeling, Adaptation and Personalization (in press)Google Scholar
  14. 14.
    Kapoor, A., Burleson, W., Picard, R.: Automatic Prediction of Frustration. Int. J. of Human-Computer Studies 65(8), 724–736 (2007)CrossRefGoogle Scholar
  15. 15.
    McQuiggan, S., Lester, J.: Diagnosing Self-Efficacy in Intelligent Tutoring Systems: An Empirical Study. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 565–574. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Cooper, D., Arroyo, I., Woolf, B., Muldner, K., Burleson, W., Christopherson, R.: Sensors Model Student Self Concept in the Classroom. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 30–41. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    D’Mello, S., Graesser, A.: Mind and Body: Dialogue and Posture for Affect Detection in Learning Environments. In: Luckin, R., Koedinger, K., Greer, J. (eds.) Proc. of the 13th Int. Conference on Artificial Intelligence in Education, pp. 161–168. IOS Press, Amsterdam (2007)Google Scholar
  18. 18.
    Conati, C., Zhou, X.: Modeling Students’ Emotions from Cognitive Appraisal in Educational Games. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 944–954. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Conati, C., Maclaren, H.: Modeling User Affect from Causes and Effects. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 4–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Conati, C., Merten, C.: Eye-Tracking for User Modeling in Exploratory Learning Environments: An Empirical Evaluation. Know. Based Systems 20(6), 557–574 (2007)CrossRefGoogle Scholar
  21. 21.
    Iqbal, S., Zheng, X., Bailey, B.: Task-Evoked Pupillary Response to Mental Workload in Human-Computer Interaction. In: Dykstra, E., Tscheligi, M. (eds.) Proc. of the ACM Conference on Human Factors in Computing Systems, pp. 1477–1480. ACM, NY (2004)CrossRefGoogle Scholar
  22. 22.
    Marshall, S.: Identifying Cognitive State from Eye Metrics. Aviation, Space and Environmental Medicine 78, 165–175 (2007)Google Scholar
  23. 23.
    Vo, M., Jacobs, A., Kuchinke, L., Hofmann, M., Conrad, M., Schacht, A., Hutzler, F.: The Coupling of Emotion and Cognition in the Eye: Introducing the Pupil Old/New Effect. Psychophysiology 45(1), 130–140 (2008)Google Scholar
  24. 24.
    Schultheis, H., Jameson, A.: Assessing Cognitive Load in Adaptive Hypermedia Systems: Physiological and Behavioral Methods. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 225–234. Springer, Heidelberg (2004)Google Scholar
  25. 25.
    Muldner, K., Christopherson, R., Atkinson, R., Burleson, W.: Investigating the Utility of Eye-Tracking Information on Affect and Reasoning for User Modeling. In: Houben, G.-J., McCalla, G., Pianesi, F., Zancanaro, M. (eds.) UMAP 2009. LNCS, vol. 5535, pp. 138–149. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  26. 26.
    Conati, C., Maclaren, H.: Empirically Building and Evaluating a Probabilistic Model of User Affect. User Modeling and User-Adapted Interaction (in press)Google Scholar
  27. 27.
    Ericsson, K., Simon, H.: Verbal Reports as Data. Psych. Rev. 87(3), 215–250 (1980)CrossRefGoogle Scholar
  28. 28.
    D’Mello, S., Craig, S., Sullins, J., Graesser, A.: Predicting Affective States Expressed through an Emote-Aloud Procedure from Autotutor’s Mixed-Initiative Dialogue. Int. J. of Artificial Intelligence in Education 16(1), 3–28 (2006)Google Scholar
  29. 29.
    Muldner, K., Conati, C.: Evaluating a Decision-Theoretic Approach to Tailored Example Selection. In: Veloso, M. (ed.) Proc. of 20th Int. Joint Conference on Artificial Intelligence, pp. 483–489. AAAI Press, Menlo Park (2007)Google Scholar
  30. 30.
    Van Gerven, P., Paas, F., Van Merrienboer, J., Schmidt, H.: Memory Load and the Cognitive Pupillary Response in Aging. Psychophysiology 41(2), 167–174 (2001)CrossRefGoogle Scholar
  31. 31.
    D’Mello, S., Picard, R., Graesser, A.: Towards an Affect Sensitive Auto Tutor. IEEE Intelligent Systems 22(4), 53–61 (2007)CrossRefGoogle Scholar
  32. 32.
    Conati, C., VanLehn, K.: Toward Computer-Based Support of Meta-Cognitive Skills: A Computational Framework to Coach Self-Explanation. Int. J. of Artificial Intelligence in Education 11, 389–415 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Kasia Muldner
    • 1
  • Winslow Burleson
    • 1
  • Kurt VanLehn
    • 1
  1. 1.Arizona State University 

Personalised recommendations