Advertisement

PersonisJ: Mobile, Client-Side User Modelling

  • Simon Gerber
  • Michael Fry
  • Judy Kay
  • Bob Kummerfeld
  • Glen Pink
  • Rainer Wasinger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6075)

Abstract

The increasing trend towards powerful mobile phones opens many possibilities for valuable personalised services to be available on the phone. Client-side personalisation for these services has important benefits when connectivity to the cloud is restricted or unavailable. The user may also find it desirable when they prefer that their user model be kept only on their phone and under their own control, rather than under the control of the cloud-based service provider. This paper describes PersonisJ, a user modelling framework that can support client-side personalisation on the Android phone platform. We discuss the particular challenges in creating a user modelling framework for this platform. We have evaluated PersonisJ at two levels: we have created a demonstrator application that delivers a personalised museum tour based on client-side personalisation; we also report on evaluations of its scalability. Contributions of this paper are the description of the architecture, the implementation, and the evaluation of a user modelling framework for client-side personalisation on mobile phones.

Keywords

Mobile Phone Client Application Android Application Intelligent User Interface Location Monitor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Shilton, K.: Four billion little brothers?: Privacy, mobile phones, and ubiquitous data collection. Queue 7(7), 40–47 (2009)Google Scholar
  2. 2.
    Church, K., Smyth, B.: Understanding the intent behind mobile information needs. In: Proceedings of the 13th international conference on Intelligent user interfaces, Sanibel Island, Florida, USA, pp. 247–256. ACM, New York (2008)CrossRefGoogle Scholar
  3. 3.
    Nylander, S., Lundquist, T., Brannstrom, A.: At home and with computer access: why and where people use cell phones to access the internet. In: Proceedings of the 27th international conference on Human factors in computing systems, Boston, MA, USA, pp. 1639–1642. ACM, New York (2009)CrossRefGoogle Scholar
  4. 4.
    Kobsa, A.: Generic User Modeling Systems, 136–154 (2007)Google Scholar
  5. 5.
    Church, K., Smyth, B.: Who, what, where & when: a new approach to mobile search. In: Proceedings of the 13th international conference on Intelligent user interfaces, Gran Canaria, Spain, pp. 309–312. ACM, New York (2008)CrossRefGoogle Scholar
  6. 6.
    Kjeldskov, J., Paay, J.: Public Pervasive Computing: Making the Invisible Visible. Computer 39(9), 60 (2006)CrossRefGoogle Scholar
  7. 7.
    Bilandzic, M., Foth, M., De Luca, A.: Cityflocks: designing social navigation for urban mobile information systems. In: DIS ’08: Proceedings of the 7th ACM conference on Designing interactive systems, pp. 174–183. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Goy, A., Ardissono, L., Petrone, G.: Personalization in e-commerce applications, 485–520 (2007)Google Scholar
  9. 9.
    Kurkovsky, S., Harihar, K.: Using ubiquitous computing in interactive mobile marketing. Personal Ubiquitous Comput. 10(4), 227–240 (2006)CrossRefGoogle Scholar
  10. 10.
    Li, J., Ari, I., Jain, J., Karp, A.H., Dekhil, M.: Mobile in-store personalized services. In: ICWS ’09: Proceedings of the 2009 IEEE International Conference on Web Services, Washington, DC, USA, pp. 727–734. IEEE Computer Society, Los Alamitos (2009)CrossRefGoogle Scholar
  11. 11.
    Kruger, A., Baus, J., Heckmann, D., Kruppa, M., Wasinger, R.: Adaptive Mobile Guides, 521–549 (2007)Google Scholar
  12. 12.
    Krüger, A., Baus, J., Heckmann, D., Kruppa, M., Wasinger, R.: Adaptive Mobile Guides. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) Adaptive Web 2007. LNCS, vol. 4321, pp. 521–549. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Stock, O., Zancanaro, M., Busetta, P., Callaway, C., Kruger, A., Kruppa, M., Kuflik, T., Not, E., Rocchi, C.: Adaptive, intelligent presentation of information for the museum visitor in PEACH. User Modeling and User-Adapted Interaction 17(3), 257–304 (2007)CrossRefGoogle Scholar
  14. 14.
    Chen, G., Kotz, D.: A survey of Context-Aware mobile computing research. Technical report, Dartmouth College (2000)Google Scholar
  15. 15.
    Assad, M., Carmichael, D., Kay, J., Kummerfeld, B.: PersonisAD: distributed, active, scrutable model framework for Context-Aware services. In: LaMarca, A., Langheinrich, M., Truong, K.N. (eds.) Pervasive 2007. LNCS, vol. 4480, pp. 55–72. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Czarkowski, M.: A Scrutable Adaptive Hypertext. PhD, University of Sydney (March 2006)Google Scholar
  17. 17.
    Gerber, S.: PersonisJ: A Platform for Context-Aware, Client-Side, Mobile Personalisation. PhD thesis, Unversity of Sydney (2009)Google Scholar
  18. 18.
    Pink, G.A.: Safe Execution of Dynamically Loaded Code on Mobile Devices. PhD thesis, Unversity of Sydney (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Simon Gerber
    • 1
  • Michael Fry
    • 1
  • Judy Kay
    • 1
  • Bob Kummerfeld
    • 1
  • Glen Pink
    • 1
  • Rainer Wasinger
    • 1
  1. 1.School of Information TechnologiesUniversity of SydneySydneyAustralia

Personalised recommendations