Advertisement

Exploiting the Hierarchical Structure of Rule-Based Specifications for Decision Planning

  • Artur Boronat
  • Roberto Bruni
  • Alberto Lluch Lafuente
  • Ugo Montanari
  • Generoso Paolillo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6117)

Abstract

Rule-based specifications have been very successful as a declarative approach in many domains, due to the handy yet solid foundations offered by rule-based machineries like term and graph rewriting. Realistic problems, however, call for suitable techniques to guarantee scalability. For instance, many domains exhibit a hierarchical structure that can be exploited conveniently. This is particularly evident for composition associations of models. We propose an explicit representation of such structured models and a methodology that exploits it for the description and analysis of model- and rule-based systems. The approach is presented in the framework of rewriting logic and its efficient implementation in the rewrite engine Maude and is illustrated with a case study.

Keywords

Hierarchical Structure Model Check Planning Problem Structural Induction Action Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aldini, A., Bernardo, M., Corradini, F.: A process algebraic approach to software architecture design. Springer, Heidelberg (2010)zbMATHCrossRefGoogle Scholar
  2. 2.
    Bistarelli, S., Montanari, U., Rossi, F.: Semiring-based constraint satisfaction and optimization. Journal of the ACM 44(2), 201–236 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Boronat, A., Meseguer, J.: An algebraic semantics for MOF. In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 377–391. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bruni, R., Lluch Lafuente, A., Montanari, U., Tuosto, E.: Style based architectural reconfigurations. EATCS 94, 161–180 (2008)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  6. 6.
    Coles, A., Fox, M., Halsey, K., Long, D., Smith, A.: Managing concurrency in temporal planning using planner-scheduler interaction. Journal on Artificial Intelligence 173(1), 1–44 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transformation. Springer, Heidelberg (March 2006)zbMATHGoogle Scholar
  8. 8.
    Giunchiglia, F., Traverso, P.: Planning as model checking. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 1–20. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Hölzl, M., Meier, M., Wirsing, M.: Which soft constraints do you prefer? In: Proceedings of the 7th International Workshop on Rewriting Logic and its Applications (WRLA 2008). ENTCS, vol. 238(3), pp. 189–205. Elsevier, Amsterdam (2008)Google Scholar
  10. 10.
    Katoen, J.-P.: Advances in probabilistic model checking. In: Barthe, G., Hermenegildo, M.V. (eds.) VMCAI 2010. LNCS, vol. 5944, p. 25. Springer, Heidelberg (2009)Google Scholar
  11. 11.
    Kumar, N., Sen, K., Meseguer, J., Agha, G.: A rewriting based model for probabilistic distributed object systems. In: Najm, E., Nestmann, U., Stevens, P. (eds.) FMOODS 2003. LNCS, vol. 2884, pp. 32–46. Springer, Heidelberg (2003)Google Scholar
  12. 12.
    Lanese, I., Montanari, U.: Synchronization algebras with mobility for graph transformations. In: Proceedings of the 3rd Joint Workshops on Foundations of Global Ubiquitous Computing (FGUC 2004). ENTCS, vol. 138(1), pp. 43–60. Elsevier, Amsterdam (2005)Google Scholar
  13. 13.
    Lluch Lafuente, A., Montanari, U.: Quantitative mu-calculus and CTL defined over constraint semirings. TCS 346(1), 135–160 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Meseguer, J.: Conditional rewriting logic as a united model of concurrency. TCS 96(1), 73–155 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ölveczky, P.C., Meseguer, J.: Specification of real-time and hybrid systems in rewriting logic. TCS 285(2), 359–405 (2002)zbMATHCrossRefGoogle Scholar
  16. 16.
    Plotkin, G.D.: A structural approach to operational semantics. Journal of Logic and Algebraic Programming 60-61, 17–139 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Rote, G.: A systolic array algorithm for the algebraic path problem (shortest paths; matrix inversion). Journal on Computing 34(3) (1985)Google Scholar
  18. 18.
    Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach. Pearson Education, London (2003)Google Scholar
  19. 19.
    Seidewitz, E.: What models mean. IEEE Journal on Software 20(5), 26–32 (2003)CrossRefGoogle Scholar
  20. 20.
    Verdejo, A., Martí-Oliet, N.: Executable structural operational semantics in Maude. Journal of Logic and Algebraic Programming 67(1-2), 226–293 (2006)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Artur Boronat
    • 1
  • Roberto Bruni
    • 2
  • Alberto Lluch Lafuente
    • 3
  • Ugo Montanari
    • 2
  • Generoso Paolillo
    • 4
  1. 1.Department of Computer ScienceUniversity of LeicesterUK
  2. 2.Department of Computer ScienceUniversity of PisaItaly
  3. 3.IMT Institute for Advanced Studies LuccaItaly
  4. 4.Laboratorio CINI-ITEM Carlo SavyNaplesItaly

Personalised recommendations