Advertisement

Logics for Contravariant Simulations

  • Ignacio Fábregas
  • David de Frutos Escrig
  • Miguel Palomino
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6117)

Abstract

Covariant-contravariant simulation and conformance simulation are two generalizations of the simple notion of simulation which aim at capturing the fact that it is not always the case that “the larger the number of behaviors, the better”. Therefore, they can be considered to be more adequate to express the fact that a system is a correct implementation of some specification. We have previously shown that these two more elaborated notions fit well within the categorical framework developed to study the notion of simulation in a generic way. Now we show that their behaviors have also simple and natural logical characterizations, though more elaborated than those for the plain simulation semantics.

Keywords

Induction Hypothesis Output Action Slot Machine Label Transition System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Antonik, A., Huth, M., Larsen, K., Nyman, U., Wasowski, A.: 20 Years of Mixed and Modal Specifications. Bulletin of the European Association for Theor. Comput. Sci. (May 2008)Google Scholar
  2. 2.
    Benes, N., Kretínský, J., Larsen, K.G., Srba, J.: On determinism in modal transition systems. Theor. Comput. Sci. 410(41), 4026–4043 (2009)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cîrstea, C.: A modular approach to defining and characterising notions of simulation. Inf. Comput. 204(4), 469–502 (2006)zbMATHCrossRefGoogle Scholar
  4. 4.
    de Alfaro, L., Henzinger, T.A.: Interface automata. In: ESEC / SIGSOFT FSE, pp. 109–120 (2001)Google Scholar
  5. 5.
    de Frutos Escrig, D., Gregorio-Rodríguez, C., Palomino, M.: On the unification of semantics for processes: observational semantics. In: Nielsen, M., Kucera, A., Miltersen, P.B., Palamidessi, C., Tuma, P., Valencia, F.D. (eds.) SOFSEM 2009. LNCS, vol. 5404, pp. 279–290. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    de Frutos-Escrig, D., Rosa Velardo, F., Gregorio-Rodríguez, C.: New bisimulation semantics for distributed systems. In: Derrick, J., Vain, J. (eds.) FORTE 2007. LNCS, vol. 4574, pp. 143–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Fábregas, I., de Frutos-Escrig, D., Palomino, M.: Non-strongly stable orders also define interesting simulation relations. In: Kurz, A., Lenisa, M., Tarlecki, A. (eds.) CALCO 2009. LNCS, vol. 5728, pp. 221–235. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hughes, J., Jacobs, B.: Simulations in coalgebra. Theor. Comput. Sci. 327(1-2), 71–108 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Leduc, G.: A framework based on implementation relations for implementing LOTOS specifications. Computer Networks and ISDN Systems 25(1), 23–41 (1992)zbMATHCrossRefGoogle Scholar
  11. 11.
    Lynch, N.: I/O automata: A model for discrete event systems. In: 22nd Annual Conference on Information Sciences and Systems, pp. 29–38 (1988)Google Scholar
  12. 12.
    Park, D.: Concurrency and automata on infinite sequences. In: GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)Google Scholar
  13. 13.
    van Glabbeek, R.J.: The linear time-branching time spectrum I: The semantics of concrete, sequential processes. In: Handbook of process algebra, pp. 3–99. North-Holland, Amsterdam (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ignacio Fábregas
    • 1
  • David de Frutos Escrig
    • 1
  • Miguel Palomino
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUCM 

Personalised recommendations