Mangrove Vegetation of the Caeté Estuary

  • U. Mehlig
  • M. P. M. Menezes
  • A. Reise
  • D. Schories
  • E. Medina
Chapter
Part of the Ecological Studies book series (ECOLSTUD, volume 211)

Abstract

The mangrove ecosystem is defined in many ways by its eponymous constituents, the mangrove trees. They are not only the most significant primary producers but also determine habitat quality through their physical structure and by interaction with the abiotic environment, e.g. by serving as substrate for a great number of organisms, by influencing soil chemistry with their root system or by governing the microclimate below their canopy. Development of the mangrove trees themselves depends on environmental settings like sediment deposition and erosion, inundation frequency, fresh water availability and temperature regime, among many others. According to these environmental settings, mangrove stands may exhibit great variation in structure and composition. A thorough description of different forest types along with selected environmental parameters is therefore crucial for any attempt to understand the ecology of the trees as well as of the associated mangrove organisms. However, without paying attention to the underlying processes and their temporal and spatial dynamics, knowledge will remain fragmentary, and may not be suitable for deriving, e.g., recommendations directed at sustainable management of mangrove resources. Unfortunately, direct observations of long-term changes in mangrove stand development can rarely be made; therefore, processes possibly decisive for stand development like the influence of neighborhood competition on establishment, growth and mortality of individual trees cannot be easily analyzed. However, computer simulations can help to test the plausibility of theoretical models of forest development by comparison of simulation results with real-world field data (see Chap 6).

Within this chapter, we try to give an account of the floristic and structural variety of mangrove forest types developing under different environmental settings within the Caeté Estuary and document the annual temporal dynamics of mangrove productivity observable in phenology, litter and propagule production of a number of mangrove stands. We further present supra-annual stem growth patterns of the prevalent mangrove tree species. Finally, we relate the physico-chemical properties of soils and the stand-specific nutrient regime with the corresponding development of forest stands as well as with litter and root production.

References

  1. Abreu MMO, Mehlig U, Nascimento RESA, Menezes MPM (2006) Analysis of floristic composition and structure in a fragment of terra firme forest and an adjacent mangrove stand on Ajuruteua peninsula, Bragança, Pará. Bol Mus Para Emílio Goeldi Sér Ciênc Nat 2:27–34Google Scholar
  2. Almeida SS (1996) Estrutura florística em áreas de manguezais paraenses: evidências da influência do estuário amazônico. Bol Mus Para Emilio Goeldi Sér Ciênc Terra 8:93–100Google Scholar
  3. Amaral DD, Santos JU, Bastos MN, Costa DC (2001) A vegetação da Ilha Canela, município de Bragança – Pará, Brazil. Bol Mus Para Emílio Goeldi Sér Bot 17:389–402Google Scholar
  4. Ash J (1983) Note on paper ‘Growth rings and rainfall correlations in a mangrove tree of the genus Diospyros (Ebenaceae)’ by Duke NC, Birch WR, Williams WT’. Aust J Bot 31:19–22CrossRefGoogle Scholar
  5. Ball MC (1980) Patterns of secondary succession in a mangrove forest of southern Florida. Oecologia 45:226–235CrossRefGoogle Scholar
  6. Barreiro-Güemes T (1999) Aporte de hojarasca y renovación foliar del manglar en un sistema estuarino del Sureste de México. Rev Biol Trop 47:729–737Google Scholar
  7. Berger U, Hildenbrandt H (2000) A new approach to spatially explicit modelling of forest dynamics: spacing, ageing and neighbourhood competition of mangrove trees. Ecol Modell 132:287–302CrossRefGoogle Scholar
  8. Berger U, Adams M, Grimm V, Hildenbrandt H (2006) Modelling secondary succession of neotropical mangroves: causes and consequences of growth reduction in pioneer species. Perspect Plant Ecol Evol Syst 7:243–252CrossRefGoogle Scholar
  9. Carlquist S (1988) Comparative wood anatomy. Springer, BerlinGoogle Scholar
  10. Carvalho ML (2002) Aspectos da produtividade primária dos bosques de mangue do Furo Grande, Bragança-Pará. MSc thesis, University of Pará, BragançaGoogle Scholar
  11. Chale FMM (1996) Litter production in an Avicennia germinans (L.) Stearn forest in Guyana, South America. Hydrobiologia 330:47–53CrossRefGoogle Scholar
  12. Chen R, Twilley RR (1998) A gap dynamics model of mangrove forest development along the gradients of soil salinity and nutrient resources. J Ecol 86:37–51CrossRefGoogle Scholar
  13. Cohen MCL, Lara RJ (2003) Temporal changes of mangrove vegetation boundaries in Amazonia: application of GIS and remote sensing techniques. Wetl Ecol Manag 11:223–231CrossRefGoogle Scholar
  14. Cohen MCL, Lara RJ, Ramos JFF, Dittmar T (1999) Factors influencing the variability of Mg, Ca and K in waters of a mangrove creek in Bragança, North Brazil. Mangr Salt Marshes 3:9–15CrossRefGoogle Scholar
  15. Cohen MCL, Lara RJ, Szlafsztein CF, Dittmar T (2000) Digital elevation model as a GIS tool for the analysis of mangrove coasts, Amazon Region, Brazil. Int J Environ Creat 3:31–41Google Scholar
  16. Cohen MCL, Souza Filho PWM, Lara RJ, Behling H, Angulo RJ (2005) A model of Holocene mangrove development and relative sea-level changes on the Bragança Peninsula (northern Brazil). Wetl Ecol Manag 13:433–443CrossRefGoogle Scholar
  17. Cox EF, Allen JA (1999) Stand structure and productivity of the introduced Rhizophora mangle in Hawaii. Estuaries 22:276–284CrossRefGoogle Scholar
  18. Cuevas E, Medina E (1988) Nutrient dynamics within Amazonian forests. Oecologia 76:222–235CrossRefGoogle Scholar
  19. Davis JH (1940) The ecology and geologic role of mangroves in Florida. Papers from the Tortugas Lab vol 32. Carnegie Inst Wash Publ 517:303–412Google Scholar
  20. Dawes C, Siar K, Marlett D (1999) Mangrove structure, litter and macroalgal productivity in a northern-most forest of Florida. Mangr Salt Marshes 3:259–267CrossRefGoogle Scholar
  21. Day JW, Conner WH, Ley-Lou F, Day RH, Navarro AM (1987) The productivity and composition of mangrove forests, Laguna de Términos, Mexico. Aquat Bot 27:267–284CrossRefGoogle Scholar
  22. Day JW Jr, Coronado-Molina C, Vera-Herrera FR, Twilley R, Rivera-Monroy VH, Alvarez-Guillen H, Day R, Conner W (1996) A 7 year record of above-ground net primary production in a southeastern Mexican mangrove forest. Aquat Bot 55:39–60CrossRefGoogle Scholar
  23. Duke NC, Birch WR, Williams WT (1981) Growth rings and rainfall correlations in a mangrove tree of the genus Diospyros (Ebenaceae). Aust J Bot 29:135–142CrossRefGoogle Scholar
  24. Ellison JC (1997) Mangrove community characteristics and litter production in Bermuda. In: Kjerfve B, Lacerda LD, Diop HS (eds) Mangrove ecosystem studies in Latin America and Africa. UNESCO, Paris, pp 8–17Google Scholar
  25. Fernandes MEB (1997) The ecology and productivity of mangroves in the Amazon region, Brazil. PhD thesis, University of York, YorkGoogle Scholar
  26. Fernandes MEB, Nascimento AAM, Carvalho ML (2009) Effects of herbivory by Hyblaea puera (Hyblaeidae: Lepidoptera) on litter production in the mangrove on the coast of Brazilian Amazonia. J Trop Ecol 25:337–339CrossRefGoogle Scholar
  27. Gill AM (1971) Endogenous control of growth-ring development in Avicennia. For Sci 17:462–465Google Scholar
  28. GRASS Development Team (2007) Geographic resources analysis support system (GRASS GIS) software ITC-irst, Trento, Italy. http://grass.itc.it
  29. Hallé F, Oldeman AAR, Tomlinson PB (1978) Tropical trees and forests. An architectural analysis. Springer, HeidelbergCrossRefGoogle Scholar
  30. Harun EN (2004) Spatial structure, leaf area index and light reception of different mangrove forest stands in Caeté mangrove estuary, Bragança, Pará, Northern Brazil. MSc thesis, University of Bremen, BremenGoogle Scholar
  31. Imbert D, Ménard S (1997) Structure de la végétation et production primaire dans la mangrove de la Baie de Fort-de-France, Martinique (F.W.I.). Biotropica 29:413–426CrossRefGoogle Scholar
  32. Imbert D, Portecop J (1986) Étude de la production de litière dans la mangrove de Guadeloupe (Antilles françaises). Acta Oecol Oecol Plant 7(4):379–396Google Scholar
  33. Lacerda LD, Conde JE, Kjerfve B, Alvarez-León R, Alarcón R, Polanía J (2002) American mangroves. In: Lacerda LD (ed) Mangrove ecosystems: function and management. Springer, Berlin, pp 1–62Google Scholar
  34. Lara RJ, Cohen MCL (2006) Sediment porewater salinity, inundation frequency and mangrove vegetation height in Bragança, North Brazil: an ecohydrology-based empirical model. Wetl Ecol Manag 14:349–358CrossRefGoogle Scholar
  35. López-Portillo J, Ezcurra E (1985) Litter fall of Avicennia germinans L. in a one-year cycle in a mudflat at the Laguna de Mecoacán, Tabasco, Mexico. Biotropica 17:186–190CrossRefGoogle Scholar
  36. Lugo AE (1999) Mangrove ecosystems research with emphasis on nutrient cycling. In: Yánez-Arancibia A, Lara-Dominguez AL (eds) Ecosistemas de manglar en Ámerica tropical. Instituto de Ecología, A.C. Xalapa, Mexico, pp 17–38Google Scholar
  37. Matni AS, Menezes MPM, Mehlig U (2006) Structure of mangrove stands from the Bragança península, Pará State, Brazil. Bol Mus Para Emílio Goeldi Sér Ciênc Nat 2:45–54Google Scholar
  38. Medina E, Giarrizzo T, Menezes MP, Lira Carvalho M, Carvalho EA, Peres A, Silva AB, VíIlhena R, Reise A, Braga C (2001) Mangal communities of the Salgado Paraense: ecological heterogeneity along the Bragança peninsula assessed through soil and leaf analysis. Amazoniana 16:397–416Google Scholar
  39. Mehlig U (2001) Aspects of tree primary production in an equatorial mangrove forest in Brazil. PhD thesis, University of Bremen, Bremen. ZMT-Contribution vol 14Google Scholar
  40. Mehlig U (2006) Phenology of the red mangrove, Rhizophora mangle L. in the Caeté Estuary, Pará. Aquat Bot 84:158–164CrossRefGoogle Scholar
  41. Mehlig U, Menezes MPM (2005) Mass defoliation of the mangrove tree Avicennia germinans by the moth Hyblaea puera (Lepidoptera: Hyblaeidae) in equatorial Brazil. Ecotropica 1:87–88Google Scholar
  42. Menezes MPM (2006) Investigations of mangrove forest dynamics in Amazonia, North Brazil. PhD thesis, University of Bremen, BremenGoogle Scholar
  43. Menezes MPM, Berger U, Worbes M (2003) Annual growth rings and long-term growth patterns of mangrove trees from the Bragança peninsula, North Brazil. Wetl Ecol Manag 11:233–243CrossRefGoogle Scholar
  44. Nascimento AAM (2005) Análise da produção anual de serapilheira nos bosques de mangue do Furo Grande, Bragança-Pará. Graduate thesis, University of Pará, BragançaGoogle Scholar
  45. Nascimento RESA, Mehlig U, Abreu MMO, Menezes MPM (2006) Produção de serapilheira em um fragmento de bosque de terra firme e um manguezal vizinhos na península de Ajuruteua, Bragança, Pará. Bol Mus Para Emílio Goeldi Sér Ciênc Nat 2:55–60Google Scholar
  46. Nordhaus I (2004) Feeding ecology of the semi-terrestrial crab Ucides cordatus (Decapoda: Brachyura) in a mangrove forest in Northern Brazil. PhD thesis, University of Bremen, ZMT-Contributions vol 18, BremenGoogle Scholar
  47. Parkinson RW, Perez-Bedmar M, Santangelo JA (1999) Red mangrove (Rhizophora mangle L.) litter fall response to selective pruning (Indian River Lagoon, Florida, U.S.A). Hydrobiologia 413:63–76CrossRefGoogle Scholar
  48. Paula JL, Duarte MN (1997) Manual de Métodos de Análise de Solos. EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária, Rio de JaneiroGoogle Scholar
  49. Pereira MVS (2005) Análise da estrutura florística de “bosques de Avicennia” na península de Ajuruteua, Bragança, Pará. Graduate thesis, University of Pará, BragançaGoogle Scholar
  50. Prance GT, Silva MF, Albuquerque BW, Araújo IJS, Carreira LMM, Braga MMN, Macedo M, Conceição PN, Lisbôa PLB, Braga PI, Lisbôa RCL, Vilhena RCQ (1975) Revisão taxonômica das espécies amazônicas de Rhizophoraceae. Acta Amazonica 5:5–22Google Scholar
  51. R Development Core Team (2007) R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. http://www.R-project.org
  52. Reise A (1999) Untersuchungen zum Streufall und Streuumsatz als Basis zur Charakterisierung des Stoffflusses in verschieden strukturierten Mangrovenwäldern Braganças/Nordostbrasiliens. Dipl thesis, University of Lüneburg, LüneburgGoogle Scholar
  53. Reise A (2003) Estimates of biomass and productivity in fringe mangroves on North-Brazil. PhD thesis, University of Bremen, ZMT Contribution vol 16, BremenGoogle Scholar
  54. Rico-Gray V, Lot A (1983) Producción de hojarasca del manglar de la Laguna de la Mancha, Veracruz, México. Biotica 8:295–301Google Scholar
  55. Robertson AI, Dixon P (1993) Separating live and dead fine roots using colloidal silica: an example from mangrove forests. Plant Soil 157:151–154Google Scholar
  56. Rodrigues LFP (2005) Variação anual dos padrões fenológicos de Avicennia germinans L. e Rhizophora mangle L. no Furo Grande, Bragança-Pará. Graduate thesis, University of Pará, BragançaGoogle Scholar
  57. Saenger P, Snedaker SC (1993) Pantropical trends in mangrove above-ground biomass and annual litter fall. Oecologia 96:293–299CrossRefGoogle Scholar
  58. Santos CCL (2005) Fenologia de Avicennia L. em dois sítios na península de Ajuruteua, Bragança, Pará. Graduate thesis, University of Pará, BragançaGoogle Scholar
  59. Schaeffer-Novelli Y, Mesquita HSL, Cintrón-Molero G (1990) The Canaéia Lagoon estuary system. Estuaries 13:193–203CrossRefGoogle Scholar
  60. Seixas JAS, Fernandes MEB, Silva ES (2006) Análise estrutural da vegetação arbórea dos mangues no Furo Grande, Bragança, Pará. Bol Mus Para Emílio Goeldi Sér Ciênc Nat 1:61–69CrossRefGoogle Scholar
  61. Silva RM (2005) Fenologia de Laguncularia racemosa (L.) Gaertn. f. em trés bosques de manguezal na península de Ajuruteua, Pará, Brasil. Graduate thesis, University of Pará, BragançaGoogle Scholar
  62. Silva CAR, Lacerda LD, Ovalle AR, Rezende CE (1998) The dynamics of heavy metals through litterfall and decomposition in a red mangrove forest. Mangr Salt Marshes 2:149–157CrossRefGoogle Scholar
  63. Soto R (1992) Nutrient concentration and retranslocation in coastal vegetation and mangroves from the pacific coast of Costa Rica. Brenesia 37:33–50Google Scholar
  64. Souza-Filho PWM, Paradella WR (2002) Recognition of the main geobotanical features along the Bragança mangrove coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 data. Wetl Ecol Manag 10:123–132Google Scholar
  65. Souza-Filho PWM, Lessa GC, Cohen MCL, Costa FR, Lara RJ (2009) The subsiding macrotidal barrier estuarine system of the eastern Amazon Coast, Northern Brazil. In: Dillenburg SR, Hesp PA (eds) Geology and geomorphology of holocene barriers of Brazil, vol 107, Lecture notes in earth sciences. Springer, New YorkGoogle Scholar
  66. Suarez N, Sobrado MA, Medina E (1998) Salinity effects on the leaf water relation components and ion accumulation patterns in Avicennia germinans (L.) seedlings. Oecologia 114:299–304CrossRefGoogle Scholar
  67. Thüllen N (1997) Analyse der Struktur eines Mangrovenwaldgebietes bei Bragança, Nordbrasilien und Untersuchungen ihr zugrunde liegender abiotischer und biotischer Faktoren. Dipl thesis, University of Bremen, BremenGoogle Scholar
  68. Thüllen N, Berger U (2000) A comparative examination of environmental factors at patchy mangrove seedling stands on the peninsula of Bragança, northern Brazil. Ecotropica 6:1–12Google Scholar
  69. Tomlinson PB (1986) The botany of mangroves. Cambridge University Press, CambridgeGoogle Scholar
  70. Twilley RR, Lugo AE, Patterson-Zucca C (1986) Litter production and turnover in basin mangrove forests in southwest Florida. Ecology 67:670–683CrossRefGoogle Scholar
  71. Twilley RR, Pozo M, Garcia VH, Rivera-Monroy VH, Zambrano R, Bodero A (1997) Litter dynamics in riverine mangrove forests in the Guayas River estuary, Ecuador. Oecologia 111:109–122CrossRefGoogle Scholar
  72. Verheyden A, Kairo JG, Beeckman H, Koedam N (2004) Growth rings, growth ring formation and age determinations in the mangrove Rhizophora mucronata. Ann Bot 94:59–66PubMedCrossRefGoogle Scholar
  73. Virgulino ARC (2005) Descrição dos padrões fenológicos de Laguncularia racemosa (L.) Gaertn. f. com ênfase na avaliação da eficiência de dois métodos empregados no estudo da fenologia vegetal. Graduate thesis, University of Pará, BragançaGoogle Scholar
  74. Walter H, Lieth H (1967) Klimadiagramm-Weltatlas. Fischer, JenaGoogle Scholar
  75. Worbes M (1995) How to measure growth dynamics in tropical trees – a review. IAWA J 16:337–351Google Scholar
  76. Worbes M, Junk WJ (1989) Dating tropical trees by means of 14C from bomb tests. Ecology 70:503–507CrossRefGoogle Scholar
  77. Worbes M, Junk WJ (1999) How old are tropical trees? The persistence of a myth. IAWA J 20:255–260Google Scholar
  78. Zamski E (1979) The mode of secondary growth and the three-dimensional structure of the phloem in Avicennia. Bot Gaz 140:67–76CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • U. Mehlig
    • 1
  • M. P. M. Menezes
    • 1
  • A. Reise
    • 2
  • D. Schories
    • 2
  • E. Medina
    • 3
  1. 1.Universidade Federal do ParáBragançaBrazil
  2. 2.Instituto de Biología Marina, Campus Isla TejaUniversidad Austral de ChileValdiviaChile
  3. 3.Instituto Venezolano de Investigaciones CientíficasCentro de EcologíaCaracasVenezuela

Personalised recommendations