Inhibition of Cyclic Nucleotide Phosphodiesterases by Methylxanthines and Related Compounds

  • Sharron H. Francis
  • Konjeti R. Sekhar
  • Hengming Ke
  • Jackie D. Corbin
Chapter
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 200)

Abstract

Naturally occurring methylxanthines were the first inhibitors of cyclic nucleotide (cN) phosphodiesterases (PDEs) to be discovered. To improve potency and specificity for inhibition of various PDEs in research and for treatment of diseases, thousands of compounds with related structures have now been synthesized. All known PDE inhibitors contain one or more rings that mimic the purine in the cN substrate and directly compete with cN for access to the catalytic site; this review focuses on inhibitors that contain a nucleus that is closely related to the xanthine ring of theophylline and caffeine and the purine ring of cNs. The specificity and potency of these compounds for blocking PDE action have been improved by appending groups at positions on the rings as well as by modification of the number and distribution of nitrogens and carbons in those rings. Several of these inhibitors are highly selective for particular PDEs; potent and largely selective PDE5 inhibitors are used clinically for treatment of erectile dysfunction [sildenafil (Viagra™), tadalafil (Cialis™) and vardenafil (Levitra™)] and pulmonary hypertension [sildenafil (Revatio™) and tadalafil (Adenocirca)]. Related compounds target other PDEs and show therapeutic promise for a number of maladies.

Keywords

Phosphodiesterases Cyclic AMP Cyclic GMP Theophylline Xanthine Caffeine Phosphodiesterase inhibitors Caffeine in beverages and foods 

References

  1. Al-Ameri H, Thomas ML, Yoon A, Mayeda GS, Burstein S, Kloner RA, Shavelle DM (2009) Complication rate of diagnostic carotid angiography performed by interventional cardiologists. Catheter Cardiovasc Interv 73:661–665PubMedCrossRefGoogle Scholar
  2. Arnaud M (2010) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  3. Aviado DM, Porter JM (1984) Pentoxifylline: a new drug for the treatment of intermittent claudication. Mechanism of action, pharmacokinetics, clinical efficacy and adverse effects. Pharmacotherapy 4:297–307PubMedGoogle Scholar
  4. Ballard SA, Gingell CJ, Tang K, Turner LA, Price ME, Naylor AM (1998) Effects of sildenafil on the relaxation of human corpus cavernosum tissue in vitro and on the activities of cyclic nucleotide phosphodiesterase isozymes. J Urol 159:2164–2171PubMedCrossRefGoogle Scholar
  5. Barnes PJ (2003a) Theophylline: new perspectives for an old drug. Am J Respir Crit Care Med 167:813–818PubMedCrossRefGoogle Scholar
  6. Barnes PJ (2003b) Therapy of chronic obstructive pulmonary disease. Pharmacol Ther 97:87–94PubMedCrossRefGoogle Scholar
  7. Barnes PJ (2005) Theophylline in chronic obstructive pulmonary disease: new horizons. Proc Am Thorac Soc 2:334–339PubMedCrossRefGoogle Scholar
  8. Barnes P (2006) Theophylline for COPD. Thorax 61:742–744PubMedCrossRefGoogle Scholar
  9. Barnes PJ, Stockley RA (2005) COPD: current therapeutic interventions and future approaches. Eur Respir J 25:1084–1106PubMedCrossRefGoogle Scholar
  10. Beavo JA, Rogers NL, Crofford OB, Hardman JG, Sutherland EW, Newman EV (1970) Effects of xanthine derivatives on lipolysis and on adenosine 3′,5′-monophosphate phosphodiesterase activity. Mol Pharmacol 6:597–603PubMedGoogle Scholar
  11. Beavo J, Houslay MD, Francis SH (2006) Cyclic nucleotide phosphodiesterase superfamily. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 3–17Google Scholar
  12. Beebe SJ, Holloway R, Rannels SR, Corbin JD (1984) Two classes of cAMP analogs which are selective for the two different cAMP-binding sites of type II protein kinase demonstrate synergism when added together to intact adipocytes. J Biol Chem 259:3539–3547PubMedGoogle Scholar
  13. Beebe SJ, Redmon JB, Blackmore PF, Corbin JD (1985) Discriminative insulin antagonism of stimulatory effects of various cAMP analogs on adipocyte lipolysis and hepatocyte glycogenolysis. J Biol Chem 260:15781–15788PubMedGoogle Scholar
  14. Beebe SJ, Blackmore PF, Chrisman TD, Corbin JD (1988) Use of synergistic pairs of site-selective cAMP analogs in intact cells. Methods Enzymol 159:118–139PubMedCrossRefGoogle Scholar
  15. Beltman J, Becker DE, Butt E, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characterization of cyclic nucleotide phosphodiesterases with cyclic GMP analogs: topology of the catalytic domains. Mol Pharmacol 47:330–339PubMedGoogle Scholar
  16. Bender AT, Beavo JA (2006) Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev 58:488–520PubMedCrossRefGoogle Scholar
  17. Bender AT, Ostenson CL, Wang EH, Beavo JA (2005) Selective up-regulation of PDE1B2 upon monocyte-to-macrophage differentiation. Proc Natl Acad Sci USA 102:497–502PubMedCrossRefGoogle Scholar
  18. Benowitz NL (1990) Clinical pharmacology of caffeine. Annu Rev Med 41:277–288PubMedCrossRefGoogle Scholar
  19. Berthet J, Sutherland EW, Rall TW (1957) The assay of glucagon and epinephrine with use of liver homogenates. J Biol Chem 229:351–361PubMedGoogle Scholar
  20. Black KL, Yin D, Ong JM, Hu J, Konda BM, Wang X, Ko MK, Bayan JA, Sacapano MR, Espinoza A, Irvin DK, Shu Y (2008) PDE5 inhibitors enhance tumor permeability and efficacy of chemotherapy in a rat brain tumor model. Brain Res 1230:290–302PubMedCrossRefGoogle Scholar
  21. Blount MA, Beasley A, Zoraghi R, Sekhar KR, Bessay EP, Francis SH, Corbin JD (2004) Binding of tritiated sildenafil, tadalafil, or vardenafil to the phosphodiesterase-5 catalytic site displays potency, specificity, heterogeneity, and cGMP stimulation. Mol Pharmacol 66:144–152PubMedCrossRefGoogle Scholar
  22. Blount MA, Zoraghi R, Ke H, Bessay EP, Corbin JD, Francis SH (2006) A 46-amino acid segment in phosphodiesterase-5 GAF-B domain provides for high vardenafil potency over sildenafil and tadalafil and is involved in phosphodiesterase-5 dimerization. Mol Pharmacol 70:1822–1831PubMedCrossRefGoogle Scholar
  23. Blount MA, Zoraghi R, Bessay EP, Beasley A, Francis SH, Corbin JD (2007) Conversion of phosphodiesterase-5 (PDE5) catalytic site to higher affinity by PDE5 inhibitors. J Pharmacol Exp Ther 323:730–737PubMedCrossRefGoogle Scholar
  24. Boolell M, Allen MJ, Ballard SA, Gepi-Attee S, Muirhead GJ, Naylor AM, Osterloh IH, Gingell C (1996) Sildenafil: an orally active type 5 cyclic GMP-specific phosphodiesterase inhibitor for the treatment of penile erectile dysfunction. Int J Impot Res 8:47–52PubMedGoogle Scholar
  25. Boutrel B, Koob GF (2004) What keeps us awake: the neuropharmacology of stimulants and wakefulness-promoting medications. Sleep 27:1181–1194PubMedGoogle Scholar
  26. Boyle CD, Xu R, Asberom T, Chackalamannil S, Clader JW, Greenlee WJ, Guzik H, Hu Y, Hu Z, Lankin CM, Pissarnitski DA, Stamford AW, Wang Y, Skell J, Kurowski S, Vemulapalli S, Palamanda J, Chintala M, Wu P, Myers J, Wang P (2005) Optimization of purine based PDE1/PDE5 inhibitors to a potent and selective PDE5 inhibitor for the treatment of male ED. Bioorg Med Chem Lett 15:2365–2369PubMedCrossRefGoogle Scholar
  27. Buckle DR, Arch JR, Connolly BJ, Fenwick AE, Foster KA, Murray KJ, Readshaw SA, Smallridge M, Smith DG (1994) Inhibition of cyclic nucleotide phosphodiesterase by derivatives of 1,3-bis(cyclopropylmethyl)xanthine. J Med Chem 37:476–485PubMedCrossRefGoogle Scholar
  28. Burnett AL, Bivalacqua TJ, Champion HC, Musicki B (2006) Long-term oral phosphodiesterase 5 inhibitor therapy alleviates recurrent priapism. Urology 67:1043–1048PubMedCrossRefGoogle Scholar
  29. Butcher RW, Sutherland EW (1962) Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem 237:1244–1250PubMedGoogle Scholar
  30. Butt E, Beltman J, Becker DE, Jensen GS, Rybalkin SD, Jastorff B, Beavo JA (1995) Characterization of cyclic nucleotide phosphodiesterases with cyclic AMP analogs: topology of the catalytic sites and comparison with other cyclic AMP-binding proteins. Mol Pharmacol 47:340–347PubMedGoogle Scholar
  31. Carson CC, Lue TF (2005) Phosphodiesterase type 5 inhibitors for erectile dysfunction. BJU Int 96:257–280PubMedCrossRefGoogle Scholar
  32. Chen G, Wang H, Robinson H, Cai J, Wan Y, Ke H (2008) An insight into the pharmacophores of phosphodiesterase-5 inhibitors from synthetic and crystal structural studies. Biochem Pharmacol 75:1717–1728PubMedCrossRefGoogle Scholar
  33. Cheng Y, Prusoff WH (1973) Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108PubMedCrossRefGoogle Scholar
  34. Choi OH, Shamim MT, Padgett WL, Daly JW (1988) Caffeine and theophylline analogues: correlation of behavioral effects with activity as adenosine receptor antagonists and as phosphodiesterase inhibitors. Life Sci 43:387–398PubMedCrossRefGoogle Scholar
  35. Chou K, Bell L (2007) Caffeine content of prepackaged national-brand and private-label carbonated beverages. J Food Sci 72:C337–C442PubMedCrossRefGoogle Scholar
  36. Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511PubMedCrossRefGoogle Scholar
  37. Corbin JD, Doskeland SO (1983) Studies of two different intrachain cGMP-binding sites of cGMP-dependent protein kinase. J Biol Chem 258:11391–11397PubMedGoogle Scholar
  38. Corbin JD, Francis SH (1999) Cyclic GMP phosphodiesterase-5: target of sildenafil. J Biol Chem 274:13729–13732PubMedCrossRefGoogle Scholar
  39. Corbin JD, Francis SH (2002) Pharmacology of phosphodiesterase-5 inhibitors. Int J Clin Pract 56:453–459PubMedGoogle Scholar
  40. Corbin JD, Beasley A, Blount MA, Francis SH (2004) Vardenafil: structural basis for higher potency over sildenafil in inhibiting cGMP-specific phosphodiesterase-5 (PDE5). Neurochem Int 45:859–863PubMedCrossRefGoogle Scholar
  41. Corbin JD, Beasley A, Blount MA, Francis SH (2005) High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem Biophys Res Commun 334:930–938PubMedCrossRefGoogle Scholar
  42. Corbin J, Francis S, Zoraghi R (2006) Tyrosine-612 in PDE5 contributes to higher affinity for vardenafil over sildenafil. Int J Impot Res 18:251–257PubMedCrossRefGoogle Scholar
  43. Cote RH (2006) Photoreceptor phosphodiesterase (PDE6): a G-protein-activated PDE regulating visual excitation in rod and cone photoreceptor cells. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 165–193Google Scholar
  44. Dao KK, Teigen K, Kopperud R, Hodneland E, Schwede F, Christensen AE, Martinez A, Doskeland SO (2006) Epac1 and cAMP-dependent protein kinase holoenzyme have similar cAMP affinity, but their cAMP domains have distinct structural features and cyclic nucleotide recognition. J Biol Chem 281:21500–21511PubMedCrossRefGoogle Scholar
  45. Degerman E, Belfrage P, Newman AH, Rice KC, Manganiello VC (1987) Purification of the putative hormone-sensitive cyclic AMP phosphodiesterase from rat adipose tissue using a derivative of cilostamide as a novel affinity ligand. J Biol Chem 262:5797–5807PubMedGoogle Scholar
  46. Dent G, Rabe K (1996) Effects of theophylline and non-selective xanthine derivatives on PDE isoenzymes and cellular function. In: Schudt C, Dent G, Rabe KF (eds) Handbook of immunopharmacology: phosphodiesterase inhibitors. Academic, San Diego, pp 41–64CrossRefGoogle Scholar
  47. Dent G, Giembycz MA, Rabe KF, Wolf B, Barnes PJ, Magnussen H (1994) Theophylline suppresses human alveolar macrophage respiratory burst through phosphodiesterase inhibition. Am J Respir Cell Mol Biol 10:565–572PubMedGoogle Scholar
  48. Doh H, Shin CY, Son M, Ko JI, Yoo M, Kim SH, Kim WB (2002) Mechanism of erectogenic effect of the selective phosphodiesterase type 5 inhibitor, DA-8159. Arch Pharm Res 25:873–878PubMedCrossRefGoogle Scholar
  49. Doskeland SO, Ogreid D, Ekanger R, Sturm PA, Miller JP, Suva RH (1983) Mapping of the two intrachain cyclic nucleotide binding sites of adenosine cyclic 3′,5′-phosphate dependent protein kinase I. Biochemistry 22:1094–1101PubMedCrossRefGoogle Scholar
  50. Dremier S, Milenkovic M, Blancquaert S, Dumont JE, Doskeland SO, Maenhaut C, Roger PP (2007) Cyclic adenosine 3′,5′-monophosphate (cAMP)-dependent protein kinases, but not exchange proteins directly activated by cAMP (Epac), mediate thyrotropin/cAMP-dependent regulation of thyroid cells. Endocrinology 148:4612–4622PubMedCrossRefGoogle Scholar
  51. Energyfiend.com (2005a) Caffeine content of drinks. Energy Fiend
  52. Energyfiend.com (2005b) Caffeine in food
  53. Erneux C, Miot F (1988) Cyclic nucleotide analogs used to study phosphodiesterase catalytic and allosteric sites. Methods Enzymol 159:520–530PubMedCrossRefGoogle Scholar
  54. Erneux C, Couchie D, Dumont JE, Jastorff B (1984) Cyclic nucleotide derivatives as probes of phosphodiesterase catalytic and regulatory sites. Adv Cyclic Nucleotide Protein Phosphor Res 16:107–118Google Scholar
  55. Erneux C, Miot F, Van Haastert PJ, Jastorff B (1985) The binding of cyclic nucleotide analogs to a purified cyclic GMP-stimulated phosphodiesterase from bovine adrenal tissue. J Cyclic Nucleotide Protein Phosphor Res 10:463–472PubMedGoogle Scholar
  56. Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, Hetman J, Beavo JA, Phillips SC (2000) Molecular cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci USA 97:3702–3707PubMedCrossRefGoogle Scholar
  57. Fisher DA, Smith JF, Pillar JS, St Denis SH, Cheng JB (1998) Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase. J Biol Chem 273:15559–15564PubMedCrossRefGoogle Scholar
  58. Francis SH, Corbin JD (2003) Molecular mechanisms and pharmacokinetics of phosphodiesterase-5 antagonists. Curr Urol Rep 4:457–465PubMedCrossRefGoogle Scholar
  59. Francis SH, Corbin JD (2005a) Phosphodiesterase-5 inhibition: the molecular biology of erectile function and dysfunction. Urol Clin N Am 32:419–429, viCrossRefGoogle Scholar
  60. Francis SH, Corbin JD (2005b) Sildenafil: efficacy, safety, tolerability and mechanism of action in treating erectile dysfunction. Expert Opin Drug Metab Toxicol 1:283–293PubMedCrossRefGoogle Scholar
  61. Francis SH, Lincoln TM, Corbin JD (1980) Characterization of a novel cGMP binding protein from rat lung. J Biol Chem 255:620–626PubMedGoogle Scholar
  62. Francis SH, Noblett BD, Todd BW, Wells JN, Corbin JD (1988) Relaxation of vascular and tracheal smooth muscle by cyclic nucleotide analogs that preferentially activate purified cGMP-dependent protein kinase. Mol Pharmacol 34:506–517PubMedGoogle Scholar
  63. Francis SH, Thomas MK, Corbin JD (1990) Cyclic GMP-binding cyclic GMP-specific phosphodiesterase from lung. In: Beavo J, Houslay MD (eds) Cyclic nucleotide phosphodiesterases: structure, regulation and drug action, vol 2. Wiley, New York, p 358Google Scholar
  64. Francis SH, Zoraghi R, Kotera J, Ke H, Bessay EP, Blount MA, Corbin JD (2006) Phosphodiesterase-5: molecular characteristics relating to structure, function, and regulation. In: Beavo SHF JA, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 131–164CrossRefGoogle Scholar
  65. Francis SH, Corbin JD, Bischoff E (2009) Cyclic GMP-hydrolyzing phosphodiesterases. Handb Exp Pharmacol (191): 367–408Google Scholar
  66. Fredholm BB (2010) Notes on the history of caffeine use. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  67. Fujishige K, Kotera J, Michibata H, Yuasa K, Takebayashi S, Okumura K, Omori K (1999) Cloning and characterization of a novel human phosphodiesterase that hydrolyzes both cAMP and cGMP (PDE10A). J Biol Chem 274:18438–18445PubMedCrossRefGoogle Scholar
  68. Galie N, Branzi A (2005) Pulmonary arterial hypertension: therapeutic algorithm. Ital Heart J 6:856–860PubMedGoogle Scholar
  69. Gamanuma M, Yuasa K, Sasaki T, Sakurai N, Kotera J, Omori K (2003) Comparison of enzymatic characterization and gene organization of cyclic nucleotide phosphodiesterase 8 family in humans. Cell Signal 15:565–574PubMedCrossRefGoogle Scholar
  70. Gamm DM, Francis SH, Angelotti TP, Corbin JD, Uhler MD (1995) The type II isoform of cGMP-dependent protein kinase is dimeric and possesses regulatory and catalytic properties distinct from the type I isoforms. J Biol Chem 270:27380–27388PubMedCrossRefGoogle Scholar
  71. Garst JE, Kramer GL, Wu YJ, Wells JN (1976) Inhibition of separated forms of phosphodiesterases from pig coronary arteries by uracils and by 7-substituted derivatives of 1-methyl-3-isobutylxanthine. J Med Chem 19:499–503PubMedCrossRefGoogle Scholar
  72. Ghofrani HA, Voswinckel R, Reichenberger F, Weissmann N, Schermuly RT, Seeger W, Grimminger F (2006) Hypoxia- and non-hypoxia-related pulmonary hypertension - established and new therapies. Cardiovasc Res 72:30–40PubMedCrossRefGoogle Scholar
  73. Gibson A (2001) Phosphodiesterase 5 inhibitors and nitrergic transmission-from zaprinast to sildenafil. Eur J Pharmacol 411:1–10PubMedCrossRefGoogle Scholar
  74. Gillespie PG, Beavo JA (1988) Characterization of a bovine cone photoreceptor phosphodiesterase purified by cyclic GMP-sepharose chromatography. J Biol Chem 263:8133–8141PubMedGoogle Scholar
  75. Gotshall RW, Hamilton KL, Foreman B, van Patot MC, Irwin DC (2009) Glutaraldehyde-polymerized bovine hemoglobin and phosphodiesterase-5 inhibition. Crit Care Med 37:1988–1993PubMedCrossRefGoogle Scholar
  76. Grant PG, Colman RW (1984) Purification and characterization of a human platelet cyclic nucleotide phosphodiesterase. Biochemistry 23:1801–1807PubMedCrossRefGoogle Scholar
  77. Greene J, Paul W, Faller A (1937) The action of theophylline with ethylene diamine on intrathecal and venous pressures in cardaic failure and on bronchial obstruction in cardaic failure and in bronchial asthma. JAMA 109:1712–1715CrossRefGoogle Scholar
  78. Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989PubMedCrossRefGoogle Scholar
  79. Guerreiro S, Marien M, Michel PP (2010) Methylxanthines and ryanodine receptor channels. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  80. Han P, Zhu X, Michaeli T (1997) Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem 272:16152–16157PubMedCrossRefGoogle Scholar
  81. Hansen RS, Charbonneau H, Beavo JA (1988) Purification of calmodulin-stimulated cyclic nucleotide phosphodiesterase by monoclonal antibody affinity chromatography. Methods Enzymol 159:543–557PubMedCrossRefGoogle Scholar
  82. Harrison SA, Reifsnyder DH, Gallis B, Cadd GG, Beavo JA (1986) Isolation and characterization of bovine cardiac muscle cGMP-inhibited phosphodiesterase: a receptor for new cardiotonic drugs. Mol Pharmacol 29:506–514PubMedGoogle Scholar
  83. Haskó G, Cronstein B (2010) Methylxanthines and inflammatory cells. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  84. Hatzimouratidis K (2008) Words of wisdom. Re: the efficacy and safety of udenafil, a new selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction. Paick J-S, Kim SW, Yang DY, Kim JJ, Lee SW, Ahn TY, Choi HK, Suh J-K, Kim SC. Eur Urol 54:946–947PubMedCrossRefGoogle Scholar
  85. Herrmann G, Aynesworth M, Martin J (1937) Successful treatment of persistent extreme dyspnea, “status asthmaticus”-use of theophylline enthlene diamine (aminophylline USP) intravenously. Lab Clin Med 23:135–148Google Scholar
  86. Hetman JM, Soderling SH, Glavas NA, Beavo JA (2000) Cloning and characterization of PDE7B, a cAMP-specific phosphodiesterase. Proc Natl Acad Sci USA 97:472–476PubMedCrossRefGoogle Scholar
  87. Hirano T, Yamagata T, Gohda M, Yamagata Y, Ichikawa T, Yanagisawa S, Ueshima K, Akamatsu K, Nakanishi M, Matsunaga K, Minakata Y, Ichinose M (2006) Inhibition of reactive nitrogen specids production in COPD airways: comparison between inhaled corticosteroid and oral theophylline. Thorax 61:761–766PubMedGoogle Scholar
  88. Huai Q, Liu Y, Francis SH, Corbin JD, Ke H (2004a) Crystal structures of phosphodiesterases 4 and 5 in complex with inhibitor 3-isobutyl-1-methylxanthine suggest a conformation determinant of inhibitor selectivity. J Biol Chem 279:13095–13101PubMedCrossRefGoogle Scholar
  89. Huai Q, Wang H, Zhang W, Colman RW, Robinson H, Ke H (2004b) Crystal structure of phosphodiesterase 9 shows orientation variation of inhibitor 3-isobutyl-1-methylxanthine binding. Proc Natl Acad Sci USA 101:9624–9629PubMedCrossRefGoogle Scholar
  90. Huang ZL, Qu WM, Eguchi N, Chen JF, Schwarzschild MA, Fredholm BB, Urade Y, Hayaishi O (2005) Adenosine A2A, but not A1, receptors mediate the arousal effect of caffeine. Nat Neurosci 8:858–859PubMedCrossRefGoogle Scholar
  91. Huston E, Lumb S, Russell A, Catterall C, Ross AH, Steele MR, Bolger GB, Perry MJ, Owens RJ, Houslay MD (1997) Molecular cloning and transient expression in COS7 cells of a novel human PDE4B cAMP-specific phosphodiesterase, HSPDE4B3. Biochem J 328(Pt 2):549–558PubMedGoogle Scholar
  92. Interest CfSitP (2007) Caffeine content of food and drugsGoogle Scholar
  93. Ito K, Lim S, Caramori G, Cosio B, Chung KF, Adcock IM, Barnes PJ (2002) A molecular mechanism of action of theophylline: induction of histone deacetylase activity to decrease inflammatory gene expression. Proc Natl Acad Sci USA 99:8921–8926PubMedCrossRefGoogle Scholar
  94. Jeong KH, Lee TW, Ihm CG, Lee SH, Moon JY, Lim SJ (2008) Effects of sildenafil on oxidative and inflammatory injuries of the kidney in streptozotocin-induced diabetic rats. Am J Nephrol 29:274–282PubMedCrossRefGoogle Scholar
  95. Kaplan JM, Herzyk DJ, Ruggieri EV, Bartus JO, Esser KM, Bugelski PJ (1995) Effect of TNF alpha production inhibitors BRL 61063 and pentoxifylline on the response of rats to poly I:C. Toxicology 95:187–196PubMedCrossRefGoogle Scholar
  96. Ke H, Wang H (2006) Structure, catalytic mechanism, and inhibitor selectivity of cyclic nucleotide phosphodiesterases. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 607–625Google Scholar
  97. Ke H, Wang H (2007) Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem 7:391–403PubMedCrossRefGoogle Scholar
  98. Kobayashi M, Nasuhara Y, Betsuyaku T, Shibuya E, Tanino Y, Tanino M, Takamura K, Nagai K, Hosokawa T, Nishimura M (2004) Effect of low-dose theophylline on airway inflammation in COPD. Respirology 9:249–254PubMedCrossRefGoogle Scholar
  99. Kotera J, Fujishige K, Yuasa K, Omori K (1999) Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochem Biophys Res Commun 261:551–557PubMedCrossRefGoogle Scholar
  100. Kumar P, Francis GS, Wilson Tang WH (2009) Phosphodiesterase 5 inhibition in heart failure: mechanisms and clinical implications. Nat Rev Cardiol 6:349–355PubMedCrossRefGoogle Scholar
  101. Lavan BE, Lakey T, Houslay MD (1989) Resolution of soluble cyclic nucleotide phosphodiesterase isoenzymes, from liver and hepatocytes, identifies a novel IBMX-insensitive form. Biochem Pharmacol 38:4123–4136PubMedCrossRefGoogle Scholar
  102. Levien TL (2006) Phosphodiesterase inhibitors in Raynaud’s phenomenon. Ann Pharmacother 40:1388–1393PubMedCrossRefGoogle Scholar
  103. Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA, Ferguson K (1996) Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J Biol Chem 271:796–806PubMedCrossRefGoogle Scholar
  104. Loughney K, Hill TR, Florio VA, Uher L, Rosman GJ, Wolda SL, Jones BA, Howard ML, McAllister-Lucas LM, Sonnenburg WK, Francis SH, Corbin JD, Beavo JA, Ferguson K (1998) Isolation and characterization of cDNAs encoding PDE5A, a human cGMP-binding, cGMP-specific 3′,5′-cyclic nucleotide phosphodiesterase. Gene 216:139–147PubMedCrossRefGoogle Scholar
  105. Lubamba B, Lecourt H, Lebacq J, Lebecque P, De Jonge H, Wallemacq P, Leal T (2008) Preclinical evidence that sildenafil and vardenafil activate chloride transport in cystic fibrosis. Am J Respir Crit Care Med 177:506–515PubMedCrossRefGoogle Scholar
  106. Martins TJ, Mumby MC, Beavo JA (1982) Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem 257:1973–1979PubMedGoogle Scholar
  107. Marwick JA, Wallis G, Meja K, Kuster B, Bouwmeester T, Chakravarty P, Fletcher D, Whittaker PA, Barnes PJ, Ito K, Adcock IM, Kirkham PA (2008) Oxidative stress modulates theophylline effects on steroid responsiveness. Biochem Biophys Res Commun 377:797–802PubMedCrossRefGoogle Scholar
  108. Mascali JJ, Cvietusa P, Negri J, Borish L (1996) Anti-inflammatory effects of theophylline: modulation of cytokine production. Ann Allergy Asthma Immunol 77:34–38PubMedCrossRefGoogle Scholar
  109. McAllister-Lucas LM, Sonnenburg WK, Kadlecek A, Seger D, LeTrong H, Colbran JL, Thomas MK, Walsh KA, Francis SH, Corbin JD, Beavo JA (1993) The structure of a bovine lung cGMP-binding, cGMP-specific phosphodiesterase deduced from a cDNA clone. J Biol Chem 268:22863–22873PubMedGoogle Scholar
  110. McKenna J, Muller G (2006) Medicinal chemistry of PDE4 inhibitors. In: Beavo SHF JA, Houslay MD (eds) Cyclic nucleotide phosphodiesterases in health and disease. CRC, Boca Raton, pp 667–699Google Scholar
  111. Medeiros JV, Gadelha GG, Lima SJ, Garcia JA, Soares PM, Santos AA, Brito GA, Ribeiro RA, Souza MH (2008) Role of the NO/cGMP/K(ATP) pathway in the protective effects of sildenafil against ethanol-induced gastric damage in rats. Br J Pharmacol 153:721–727PubMedCrossRefGoogle Scholar
  112. Mery PF, Pavoine C, Pecker F, Fischmeister R (1995) Erythro-9-(2-hydroxy-3-nonyl)adenine inhibits cyclic GMP-stimulated phosphodiesterase in isolated cardiac myocytes. Mol Pharmacol 48:121–130PubMedGoogle Scholar
  113. Michaeli T, Bloom TJ, Martins T, Loughney K, Ferguson K, Riggs M, Rodgers L, Beavo JA, Wigler M (1993) Isolation and characterization of a previously undetected human cAMP phosphodiesterase by complementation of cAMP phosphodiesterase-deficient Saccharomyces cerevisiae. J Biol Chem 268:12925–12932PubMedGoogle Scholar
  114. Miyamoto K, Yamamoto Y, Kurita M, Sakai R, Konno K, Sanae F, Ohshima T, Takagi K, Hasegawa T, Iwasaki N et al (1993) Bronchodilator activity of xanthine derivatives substituted with functional groups at the 1- or 7-position. J Med Chem 36:1380–1386PubMedCrossRefGoogle Scholar
  115. Miyamoto K, Kurita M, Sakai R, Sanae F, Wakusawa S, Takagi K (1994) Cyclic nucleotide phosphodiesterase isoenzymes in guinea-pig tracheal muscle and bronchorelaxation by alkylxanthines. Biochem Pharmacol 48:1219–1223PubMedCrossRefGoogle Scholar
  116. Müller C, Jacobson KA (2010) Xanthines as adenosine receptor antagonists. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  117. Mushlin P, Boerth RC, Wells JN (1981) Selective phosphodiesterase inhibition and alterations of cardiac function by alkylated xanthines. Mol Pharmacol 20:179–189PubMedGoogle Scholar
  118. Nakamizo T, Kawamata J, Yoshida K, Kawai Y, Kanki R, Sawada H, Kihara T, Yamashita H, Shibasaki H, Akaike A, Shimohama S (2003) Phosphodiesterase inhibitors are neuroprotective to cultured spinal motor neurons. J Neurosci Res 71:485–495PubMedCrossRefGoogle Scholar
  119. O'Brien M, McCoy T, Rhodes S, Wagoner A, Wolfson M (2008) Caffeinated cocktails: energy drink consumption, high-risk drinking, and alcohol-related consequences among college students. Acad Emerg Med 15:453–460PubMedCrossRefGoogle Scholar
  120. Ohta A, Sitkovsky M (2010) Methylxanthines, inflammation and cancer: Fundamental mechanisms. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  121. Osswald H, Schnermann J (2010) Methylxanthines and the kidney. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  122. Petersen RK, Madsen L, Pedersen LM, Hallenborg P, Hagland H, Viste K, Doskeland SO, Kristiansen K (2008) Cyclic AMP (cAMP)-mediated stimulation of adipocyte differentiation requires the synergistic action of Epac- and cAMP-dependent protein kinase-dependent processes. Mol Cell Biol 28:3804–3816PubMedCrossRefGoogle Scholar
  123. Poppe H, Rybalkin SD, Rehmann H, Hinds TR, Tang XB, Christensen AE, Schwede F, Genieser HG, Bos JL, Doskeland SO, Beavo JA, Butt E (2008) Cyclic nucleotide analogs as probes of signaling pathways. Nat Methods 5:277–278PubMedCrossRefGoogle Scholar
  124. Porkka-Heiskanen T (2010) Methylxanthines and sleep. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  125. Puzzo D, Sapienza S, Arancio O, Palmeri A (2008) Role of phosphodiesterase 5 in synaptic plasticity and memory. Neuropsychiatr Dis Treat 4:371–387PubMedCrossRefGoogle Scholar
  126. Rabe KF, Magnussen H, Dent G (1995) Theophylline and selective PDE inhibitors as bronchodilators and smooth muscle relaxants. Eur Respir J 8:637–642PubMedGoogle Scholar
  127. Regensteiner JG, Hiatt WR (2002) Treatment of peripheral arterial disease. Clin Cornerstone 4:26–40PubMedCrossRefGoogle Scholar
  128. Rehmann H, Schwede F, Doskeland SO, Wittinghofer A, Bos JL (2003) Ligand-mediated activation of the cAMP-responsive guanine nucleotide exchange factor Epac. J Biol Chem 278:38548–38556PubMedCrossRefGoogle Scholar
  129. Rena G, Begg F, Ross A, MacKenzie C, McPhee I, Campbell L, Huston E, Sullivan M, Houslay MD (2001) Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol 59:996–1011PubMedGoogle Scholar
  130. Rieg T, Steigele H, Schnermann J, Richter K, Osswald H, Vallon V (2005) Requirement of intact adenosine A1 receptors for the diuretic and natriuretic of the methylxanthines theophylline and caffeine. J Pharmacol Exp Ther 313:403–419PubMedCrossRefGoogle Scholar
  131. Rosman GJ, Martins TJ, Sonnenburg WK, Beavo JA, Ferguson K, Loughney K (1997) Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene 191:89–95PubMedCrossRefGoogle Scholar
  132. Rutten K, Van Donkelaar EL, Ferrington L, Blokland A, Bollen E, Steinbusch HW, Kelly PA, Prickaerts JH (2009) Phosphodiesterase inhibitors enhance object memory independent of cerebral blood flow and glucose utilization in rats. Neuropsychopharmacology 34:1914–1925PubMedCrossRefGoogle Scholar
  133. Salanova M, Jin SC, Conti M (1998) Heterologous expression and purification of recombinant rolipram-sensitive cyclic AMP-specific phosphodiesterases. Methods 14:55–64PubMedCrossRefGoogle Scholar
  134. Salloum FN, Takenoshita Y, Ockaili RA, Daoud VP, Chou E, Yoshida KI, Kukreja RC (2006) Sildenafil and vardenafil but not nitroglycerin limit myocardial infarction through opening of mitochondrial K(ATP) channels when administered at reperfusion following ischemia in rabbits. J Mol Cell Cardiol 42:453–458PubMedCrossRefGoogle Scholar
  135. Salter H (1859) On some points in the treatment and clinical history of asthma. Edinb Med J 4:1109–1115Google Scholar
  136. Salter E, Wierzbicki A, Sperl G, Thompson WJ (2003) Quantum mechanical study of the syn and anti conformations of solvated cyclic GMP. Struct Chem 14:527–533CrossRefGoogle Scholar
  137. Sasaki T, Kotera J, Yuasa K, Omori K (2000) Identification of human PDE7B, a cAMP-specific phosphodiesterase. Biochem Biophys Res Commun 271:575–583PubMedCrossRefGoogle Scholar
  138. Sasaki T, Kotera J, Omori K (2002) Novel alternative splice variants of rat phosphodiesterase 7B showing unique tissue-specific expression and phosphorylation. Biochem J 361:211–220PubMedCrossRefGoogle Scholar
  139. Sattin A (1971) Increase in the content of adenosine 3′,5′-monophosphate in mouse forebrain during seizures and prevention of the increase by methylxanthines. J Neurochem 18:1087–1096PubMedCrossRefGoogle Scholar
  140. Sattin A, Rall TW (1970) The effect of adenosine and adenine nucleotides on the cyclic adenosine 3′,5′-phosphate content of guinea pig cerebral cortex slices. Mol Pharmacol 6:13–23PubMedGoogle Scholar
  141. Sawynok J, Yaksh TL (1993) Caffeine as an analgesic adjuvant: a review of pharmacology and mechanisms of action. Pharmacol Rev 45:43–85PubMedGoogle Scholar
  142. Scapin G, Patel SB, Chung C, Varnerin JP, Edmondson SD, Mastracchio A, Parmee ER, Singh SB, Becker JW, Van der Ploeg LH, Tota MR (2004) Crystal structure of human phosphodiesterase 3B: atomic basis for substrate and inhibitor specificity. Biochemistry 43:6091–6100PubMedCrossRefGoogle Scholar
  143. Sekhar KR, Hatchett RJ, Shabb JB, Wolfe L, Francis SH, Wells JN, Jastorff B, Butt E, Chakinala MM, Corbin JD (1992) Relaxation of pig coronary arteries by new and potent cGMP analogs that selectively activate type I alpha, compared with type I beta, cGMP-dependent protein kinase. Mol Pharmacol 42:103–108PubMedGoogle Scholar
  144. Sekhar KR, Grondin P, Francis SH, Corbin JD (1996) Design and synthesis of xanthines and cyclic GMP analogues as potent inhibitors of PDE5. In: Schudt C, Dent G, Rabe KF (eds) Phosphodiesterase inhibitors. Academic, New York, pp 135–146CrossRefGoogle Scholar
  145. Sharma RK, Wang JH (1986) Calmodulin and Ca2+-dependent phosphorylation and dephosphorylation of 63-kDa subunit-containing bovine brain calmodulin-stimulated cyclic nucleotide phosphodiesterase isozyme. J Biol Chem 261:1322–1328PubMedGoogle Scholar
  146. Sharma RK, Adachi AM, Adachi K, Wang JH (1984) Demonstration of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isozymes by monoclonal antibodies. J Biol Chem 259:9248–9254PubMedGoogle Scholar
  147. Silver PJ, Dundore RL, Bode DC, de Garavilla L, Buchholz RA, van Aller G, Hamel LT, Bacon E, Singh B, Lesher GY et al (1994) Cyclic GMP potentiation by WIN 58237, a novel cyclic nucleotide phosphodiesterase inhibitor. J Pharmacol Exp Ther 271:1143–1149PubMedGoogle Scholar
  148. Smellie FW, Davis CW, Daly JW, Wells JN (1979) Alkylxanthines: inhibition of adenosine-elicited accumulation of cyclic AMP in brain slices and of brain phosphodiesterase activity. Life Sci 24:2475–2482PubMedCrossRefGoogle Scholar
  149. Smit HJ (2010) Theobromine and the pharmacology of cocoa. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  150. Snyder PB, Florio VA, Ferguson K, Loughney K (1999) Isolation, expression and analysis of splice variants of a human Ca2+/calmodulin-stimulated phosphodiesterase (PDE1A). Cell Signal 11:535–544PubMedCrossRefGoogle Scholar
  151. Soderling SH, Bayuga SJ, Beavo JA (1998) Identification and characterization of a novel family of cyclic nucleotide phosphodiesterases. J Biol Chem 273:15553–15558PubMedCrossRefGoogle Scholar
  152. Solinas M, Ferre S, You ZB, Karcz-Kubicha M, Popoli P, Goldberg SR (2002) Caffeine induces dopamine and glutamate release in the shell of the nucleus accumbens. J Neurosci 22:6321–6324PubMedGoogle Scholar
  153. Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA (1995) Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem 270:30989–31000PubMedCrossRefGoogle Scholar
  154. Stief C, Porst H, Saenz De Tejada I, Ulbrich E, Beneke M (2004) Sustained efficacy and tolerability with vardenafil over 2 years of treatment in men with erectile dysfunction. Int J Clin Pract 58:230–239PubMedCrossRefGoogle Scholar
  155. Stief CG, Porst H, Neuser D, Beneke M, Ulbrich E (2008) A randomised, placebo-controlled study to assess the efficacy of twice-daily vardenafil in the treatment of lower urinary tract symptoms secondary to benign prostatic hyperplasia. Eur Urol 53:1236–1244PubMedCrossRefGoogle Scholar
  156. Strassmaier T, Karpen JW (2007) Novel N7- and N1-substituted cGMP derivatives are potent activators of cyclic nucleotide-gated channels. J Med Chem 50:4186–4194PubMedCrossRefGoogle Scholar
  157. Sullivan P, Bekir S, Jaffar Z, Page C, Jeffery P, Costello J (1994a) Anti-inflammatory effects of low-dose oral theophylline in atopic asthma. Lancet 343:1006–1008PubMedCrossRefGoogle Scholar
  158. Sullivan S, Page CP, Costello JF (1994b) Xanthines. Raven, New YorkGoogle Scholar
  159. Sung BJ, Hwang KY, Jeon YH, Lee JI, Heo YS, Kim JH, Moon J, Yoon JM, Hyun YL, Kim E, Eum SJ, Park SY, Lee JO, Lee TG, Ro S, Cho JM (2003) Structure of the catalytic domain of human phosphodiesterase 5 with bound drug molecules. Nature 425:98–102PubMedCrossRefGoogle Scholar
  160. Sutherland EW, Rall TW (1958) Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem 232:1077–1091PubMedGoogle Scholar
  161. Takio K, Wade RD, Smith SB, Krebs EG, Walsh KA, Titani K (1984) Guanosine cyclic 3′,5′-phosphate dependent protein kinase, a chimeric protein homologous with two separate protein families. Biochemistry 23:4207–4218PubMedCrossRefGoogle Scholar
  162. Taniguchi Y, Tonai-Kachi H, Shinjo K (2006) Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett 580:5003–5008PubMedCrossRefGoogle Scholar
  163. Thomas MK, Francis SH, Corbin JD (1990) Characterization of a purified bovine lung cGMP-binding cGMP phosphodiesterase. J Biol Chem 265:14964–14970PubMedGoogle Scholar
  164. Thomas MK, Francis SH, Beebe SJ, Gettys TW, Corbin JD (1992) Partial mapping of cyclic nucleotide sites and studies of regulatory mechanisms of phosphodiesterases using cyclic nucleotide analogues. Adv Second Messenger Phosphoprotein Res 25:45–53PubMedGoogle Scholar
  165. Thompson WJ (1991) Cyclic nucleotide phosphodiesterases: pharmacology, biochemistry and function. [Review] [195 refs]. Pharmacol Ther 51:13–33PubMedCrossRefGoogle Scholar
  166. Tilley SL (2010) Methylxanthines in asthma. In: Fredholm BB (ed) Methylxanthines. Springer, HeidelbergGoogle Scholar
  167. Tjon JA, Riemann LE (2001) Treatment of intermittent claudication with pentoxifylline and cilostazol. Am J Health Syst Pharm 58:485–496Google Scholar
  168. Toque HA, Teixeira CE, Priviero FB, Morganti RP, Antunes E, De Nucci G (2008) Vardenafil, but not sildenafil or tadalafil, has calcium-channel blocking activity in rabbit isolated pulmonary artery and human washed platelets. Br J Pharmacol 154:787–796PubMedCrossRefGoogle Scholar
  169. Torphy TJ, Livi GP, Balcarek JM, White JR, Chilton FH, Undem BJ (1992) Therapeutic potential of isozyme-selective phosphodiesterase inhibitors in the treatment of asthma. Adv Second Messenger Phosphoprotein Res 25:289–305PubMedGoogle Scholar
  170. Turko IV, Francis SH, Corbin JD (1998) Potential roles of conserved amino acids in the catalytic domain of the cGMP-binding cGMP-specific phosphodiesterase. J Biol Chem 273:6460–6466PubMedCrossRefGoogle Scholar
  171. Turko IV, Ballard SA, Francis SH, Corbin JD (1999) Inhibition of cyclic GMP-binding cyclic GMP-specific phosphodiesterase (type 5) by sildenafil and related compounds. Mol Pharmacol 56:124–130PubMedGoogle Scholar
  172. Wallace DA, Johnston LA, Huston E, MacMaster D, Houslay TM, Cheung YF, Campbell L, Millen JE, Smith RA, Gall I, Knowles RG, Sullivan M, Houslay MD (2005) Identification and characterization of PDE4A11, a novel, widely expressed long isoform encoded by the human PDE4A cAMP phosphodiesterase gene. Mol Pharmacol 67:1920–1934PubMedCrossRefGoogle Scholar
  173. Wang P, Myers JG, Wu P, Cheewatrakoolpong B, Egan RW, Billah MM (1997) Expression, purification, and characterization of human cAMP-specific phosphodiesterase (PDE4) subtypes A, B, C, and D. Biochem Biophys Res Commun 234:320–324PubMedCrossRefGoogle Scholar
  174. Wang Y, Chackalamannil S, Hu Z, Boyle CD, Lankin CM, Xia Y, Xu R, Asberom T, Pissarnitski D, Stamford AW, Greenlee WJ, Skell J, Kurowski S, Vemulapalli S, Palamanda J, Chintala M, Wu P, Myers J, Wang P (2002) Design and synthesis of xanthine analogues as potent and selective PDE5 inhibitors. Bioorg Med Chem Lett 12:3149–3152PubMedCrossRefGoogle Scholar
  175. Wang H, Liu Y, Chen Y, Robinson H, Ke H (2005) Multiple elements jointly determine inhibitor selectivity of cyclic nucleotide phosphodiesterases 4 and 7. J Biol Chem 280:30949–30955PubMedCrossRefGoogle Scholar
  176. Wang H, Liu Y, Huai Q, Cai J, Zoraghi R, Francis SH, Corbin JD, Robinson H, Xin Z, Lin G, Ke H (2006) Multiple conformations of phosphodiesterase-5: implications for enzyme function and drug development. J Biol Chem 281:21469–21479PubMedCrossRefGoogle Scholar
  177. Wang H, Liu Y, Hou J, Zheng M, Robinson H, Ke H (2007a) Structural insight into substrate specificity of phosphodiesterase 10. Proc Natl Acad Sci USA 104:5782–5787PubMedCrossRefGoogle Scholar
  178. Wang H, Robinson H, Ke H (2007b) The molecular basis for different recognition of substrates by phosphodiesterase families 4 and 10. J Mol Biol 371:302–307PubMedCrossRefGoogle Scholar
  179. Wang H, Yan Z, Yang S, Cai J, Robinson H, Ke H (2008a) Kinetic and structural studies of phosphodiesterase-8A and implication on the inhibitor selectivity. Biochemistry 47:12760–12768PubMedCrossRefGoogle Scholar
  180. Wang H, Ye M, Robinson H, Francis SH, Ke H (2008b) Conformational variations of both phosphodiesterase-5 and inhibitors provide the structural basis for the physiological effects of vardenafil and sildenafil. Mol Pharmacol 73:104–110PubMedCrossRefGoogle Scholar
  181. Weeks JL 2nd, Zoraghi R, Francis SH, Corbin JD (2007) N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry 46:10353–10364PubMedCrossRefGoogle Scholar
  182. Wells JN, Kramer GL (1981) Phosphodiesterase inhibitors as tools in cyclic nucleotide research: a precautionary comment. Mol Cell Endocrinol 23:1–9PubMedCrossRefGoogle Scholar
  183. Wells JN, Garst JE, Kramer GL (1981) Inhibition of separated forms of cyclic nucleotide phosphodiesterase from pig coronary arteries by 1, 3-disubstituted and 1, 3, 8-trisubstituted xanthines. J Med Chem 24:954–958PubMedCrossRefGoogle Scholar
  184. Wernet W, Flockerzi V, Hofmann F (1989) The cDNA of the two isoforms of bovine cGMP-dependent protein kinase. FEBS Lett 251:191–196PubMedCrossRefGoogle Scholar
  185. Wolfe L, Corbin JD, Francis SH (1989) Characterization of a novel isozyme of cGMP-dependent protein kinase from bovine aorta. J Biol Chem 264:7734–7741PubMedGoogle Scholar
  186. Wosilait WD, Sutherland EW (1956) The relationship of epinephrine and glucagon to liver phosphorylase. II. Enzymatic inactivation of liver phosphorylase. J Biol Chem 218:469–481PubMedGoogle Scholar
  187. Xu RX, Hassell AM, Vanderwall D, Lambert MH, Holmes WD, Luther MA, Rocque WJ, Milburn MV, Zhao Y, Ke H, Nolte RT (2000) Atomic structure of PDE4: insights into phosphodiesterase mechanism and specificity. Science 288:1822–1825PubMedCrossRefGoogle Scholar
  188. Yan C, Zhao AZ, Bentley JK, Beavo JA (1996) The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J Biol Chem 271:25699–25706PubMedCrossRefGoogle Scholar
  189. Yang JN, Bjorklund O, Lindstrom-Tornqvist K, Lindgren E, Eriksson TM, Kahlstrom J, Chen JF, Schwarzschild MA, Tobler I, Fredholm BB (2009a) Mice heterozygous for both A1 and A(2A) adenosine receptor genes show similarities to mice given long-term caffeine. J Appl Physiol 106:631–639PubMedCrossRefGoogle Scholar
  190. Yang JN, Chen JF, Fredholm BB (2009b) Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 296:H1141–H1149PubMedCrossRefGoogle Scholar
  191. Yu L, Coelho JE, Zhang X, Fu Y, Tillman A, Karaoz U, Fredholm BB, Weng Z, Chen JF (2009) Uncovering multiple molecular targets for caffeine using a drug target validation strategy combining A 2A receptor knockout mice with microarray profiling. Physiol Genomics 37:199–210PubMedCrossRefGoogle Scholar
  192. Yuasa K, Ohgaru T, Asahina M, Omori K (2001) Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): comparison of rat and human PDE11A splicing variants. Eur J Biochem 268:4440–4448PubMedCrossRefGoogle Scholar
  193. Zhang KYJ (2006) Crystal structure of phosphodiesterase families and the potential for rational drug design. In: Beavo J, Francis SH, Houslay MD (eds) Cyclic nucleotide phosphodiesterase in health and disease. CRC, Boca Raton, pp 583–605Google Scholar
  194. Zhang X, Feng Q, Cote RH (2005) Efficacy and selectivity of phosphodiesterase-targeted drugs in inhibiting photoreceptor phosphodiesterase (PDE6) in retinal photoreceptors. Invest Ophthalmol Vis Sci 46:3060–3066PubMedCrossRefGoogle Scholar
  195. Zoraghi R, Corbin JD, Francis SH (2006) Phosphodiesterase-5 Gln817 is critical for cGMP, vardenafil, or sildenafil affinity: its orientation impacts cGMP but not cAMP affinity. J Biol Chem 281:5553–5558PubMedCrossRefGoogle Scholar
  196. Zoraghi R, Francis SH, Corbin JD (2007) Critical amino acids in phosphodiesterase-5 catalytic site that provide for high-affinity interaction with cGMP and inhibitors. Biochemistry 46:13554–13563PubMedCrossRefGoogle Scholar

Copyright information

© Springer Berlin Heidelberg 2011

Authors and Affiliations

  • Sharron H. Francis
    • 1
  • Konjeti R. Sekhar
    • 2
  • Hengming Ke
    • 3
  • Jackie D. Corbin
    • 1
  1. 1.Department of Molecular Physiology and BiophysicsVanderbilt University School of MedicineNashvilleUSA
  2. 2.Department of Radiation BiologyVanderbilt University School of MedicineNashvilleUSA
  3. 3.Department of Biochemistry and BiophysicsUniversity of North Carolina at Chapel HillChapel HillUSA

Personalised recommendations