Plasma Membrane and Abiotic Stress

  • Bronwyn J. Barkla
  • Omar Pantoja
Chapter
Part of the Plant Cell Monographs book series (CELLMONO, volume 19)

Abstract

Environmental factors exert influence on nearly every aspect of plant function throughout its life cycle. In response to changing and often unfavorable conditions, stress perception in plants initiates signal transduction events that lead to expression of specific stress-related genes and generation of stress-protecting metabolites. Some of these responses are evidently adaptive and lead to changes that increase the chance of survival under adverse conditions, while others are symptoms of stress injury and are pathological in nature. As stressful abiotic environmental conditions can range from exposure to drought, salinity, cold, freezing, high temperature, anoxia, high light intensity, and nutrient imbalance, a complex and overlapping network of molecular machinery must regulate plant responses to these conditions.

The plasma membrane (PM) of the plant cell acts as an important barrier that separates and shields the cell from its environment. However, the PM is also the site of sensors that interpret environmental conditions and transduce signals to other sites on the membrane, inside the cell, and distal portions of the plant to provide for direct and rapid responses to changing environmental conditions. PM sensors can respond directly to alleviate a stress condition, signal secondary changes at the membrane, or activate signaling cascades that potentiate tertiary changes in stress-regulated gene expression.

Notes

Acknowledgments

Work in the lab is funded by CONACyT (49735 to BJB and 79191 to OP) and DGAPA (IN212410 to BJB and IN218308 to OP).

References

  1. Akaboshi M, Hashimoto H, Ishida H, Saijo S, Koizumi N, Sato M, Shimizu T (2008) The crystal structure of plant-specific calcium-binding protein AtCBL2 in complex with the regulatory domain of AtCIPK14. J Mol Biol 377:246–257PubMedCrossRefGoogle Scholar
  2. Albrecht V, Weinl S, Blazevic A, D’Angelo C, Batistic O, Kolukisaoglu Ü, Bock R, Schulz B, Harter K, Kudla J (2003) The calcium sensor CBL1 integrates plant responses to abiotic stresses. Plant J 36:457–470PubMedCrossRefGoogle Scholar
  3. Andrews NW (2005) Membrane resealing: synaptotagmin VII keeps running the show. Sci Signal 3:pe15Google Scholar
  4. Batistic O, Kudla J (2009) Plant calcineurin B-like proteins and their interacting protein kinases. Biochim Biophys Acta 1793:985–992PubMedCrossRefGoogle Scholar
  5. Batistic O, Sorek N, Schultke S, Yalovsky S, Kudla J (2008) Dual fatty acyl modification determines the localization and plasma membrane targeting of CBL/CIPK Ca2+ signaling complexes in Arabidopsis. Plant Cell 20:1346–1362PubMedCrossRefGoogle Scholar
  6. Belles-Boix E, Babiychuk E, Van Montagu M, Inzé D, Kushnir S (2000) CEO1, a new protein from Arabidopsis thaliana, protects yeast against oxidative damage. FEBS Lett 482:19–24PubMedCrossRefGoogle Scholar
  7. Berthomieu P, Conejero G, Nublat A, Brackenbury WJ, Lambert C, Savio C, Uozumi N, Oiki S, Yamada K, Cellier F, Gosti F, Simonneau T, Essah PA, Tester M, Very AA, Sentenac H, Casse F (2003) Functional analysis of AtHKT1 in Arabidopsis shows that Na+ recirculation by the phloem is crucial for salt tolerance. EMBO J 22:2004–2014PubMedCrossRefGoogle Scholar
  8. Chen YN, Slabaugh E, Brandizzi F (2008) Membrane-tethered transcription factors in Arabidopsis thaliana: novel regulators in stress response and development. Curr Opin Plant Biol. 11:695–701PubMedCrossRefGoogle Scholar
  9. Cheong YH, Kim KN, Pandey GK, Gupta R, Grant JJ, Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought, and cold responses in Arabidopsis. Plant Cell 15:1833–1845PubMedCrossRefGoogle Scholar
  10. Cheong YH, Pandey GK, Grant JJ, Batistic O, Li L, Kim B-G, Lee SC, Kudla J, Luan S (2007) Two calcineurin B-like calcium sensors, interacting with protein kinase CIPK23, regulate leaf transpiration and root potassium uptake in Arabidopsis. Plant J 52:223–239PubMedCrossRefGoogle Scholar
  11. Desikan R, Horák J, Chaban C, Mira-Rodado V, Witthöft J, Elgass K, Grefen C, Cheung MK, Meixner AJ, Hooley R, Neill SJ, Hancock JT, Harter K (2008) The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS ONE 3:e2491PubMedCrossRefGoogle Scholar
  12. Diez-Sampedro A, Hirayama BA, Osswald C, Gorboulev V, Baumgarten K, Volk C, Wright EM, Koepsell H (2003) A glucose sensor hiding in a family of transporters. Proc Natl Acad Sci USA 100:11753–11758PubMedCrossRefGoogle Scholar
  13. Fan L-M, Zhao Z, Assmann SM (2004) Guard cells: a dynamic signaling model. Curr Opin Plant Biol 7:537–546PubMedCrossRefGoogle Scholar
  14. Fuglsang AT, Guo Y, Cuin TA, Qiu Q, Song C, Kristiansen KA, Bych K, Schulz A, Shabala S, Schumaker KS, Palmgren MG, Zhu JK (2007) Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19:1617–1634PubMedCrossRefGoogle Scholar
  15. Garciadeblás B, Senn ME, Bañuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedCrossRefGoogle Scholar
  16. Ghosh S, May MJ, Kopp EB (1998) NF-kB and Rel proteins: evolutionarily conserved mediators of immune responses. Annu Rev Immunol 16:225–260PubMedCrossRefGoogle Scholar
  17. Golldack D, Su H, Quigley F, Kamasani UR, Muñoz-Garay C, Balderas E, Popova OV, Bennett J, Bohnert HJ, Pantoja O (2002) Characterization of a HKT-type transporter in rice as a general alkali cation transporter. Plant J 31:529–542PubMedCrossRefGoogle Scholar
  18. Gong JM, Waner DA, Horie T, Li SL, Horie R, Abid KB, Schroeder JI (2004) Microarray-based rapid cloning of an ion accumulation deletion mutant in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:15404–15409PubMedCrossRefGoogle Scholar
  19. Grefen C, Blatt MR (2009) SNAREs – molecular governors in signalling and development. Curr Opin Plant Biol 11:600–609CrossRefGoogle Scholar
  20. Grefen C, Städele K, Ruzicka K, Obrdlik P, Harter K, Horak J (2008) Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Mol Plant 1:308–320PubMedCrossRefGoogle Scholar
  21. Grobler J, Bauer F, Subden RE, Van Vuuren HJ (1995) The mae1 gene of Schizosaccharomyces pombe encodes a permease for malate and other C4 dicarboxylic acids. Yeast 11:1485–1491PubMedCrossRefGoogle Scholar
  22. Gu Z, Ma B, Jiang Y, Chen Z, Su X, Zhang H (2008) Expression analysis of the calcineurin B-like gene family in rice (Oryza sativa L.) under environmental stresses. Gene 415:1–12PubMedCrossRefGoogle Scholar
  23. Guo Y, Halfter U, Ishitani M, Zhu JK (2001) Molecular characterization of functional domains in the protein kinase SOS2 that is required for plant salt tolerance. Plant Cell 13:1383–1400PubMedGoogle Scholar
  24. Guzzo J, Dubow MS (2000) A novel selenite- and tellurite-inducible gene in Escherichia coli. Appl Environ Microbiol 66:4972–4978PubMedCrossRefGoogle Scholar
  25. Horie T, Yoshida K, Nakayama H, Yamada K, Oiki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transport in Oryza sativa. Plant J 27:129138CrossRefGoogle Scholar
  26. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung H-Y, Miyao A, Hirochika H, Gynheung A, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+-starved roots for growth. EMBO J 26:1–12CrossRefGoogle Scholar
  27. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678PubMedGoogle Scholar
  28. Katiyar-Agarwal S, Zhu J, Kim K, Agarwal M, Fu X, Huang A, Zhu JK (2006) The plasma membrane Na+/H+ antiporter SOS1 interacts with RCD1 and functions in oxidative stress tolerance in Arabidopsis. Proc Natl Acad Sci USA 103:18816–18821PubMedCrossRefGoogle Scholar
  29. Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154PubMedCrossRefGoogle Scholar
  30. Kim KN, Cheong YH, Gupta R, Luan S (2000) Interaction specificity of Arabidopsis calcineurin B-like calcium sensors and their target kinases. Plant Physiol 124:1844–1853PubMedCrossRefGoogle Scholar
  31. Kim YS, Kim SG, Park JE, Park HY, Lim MH, Chua N-H, Park C-M (2006) A membrane-bound NAC transcription factor regulates cell division in Arabidopsis. Plant Cell 18:3132–3144PubMedCrossRefGoogle Scholar
  32. Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007a) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35:203–213PubMedCrossRefGoogle Scholar
  33. Kim SG, Kim SY, Park C-M (2007b) A membrane-associated NAC transcription factor regulates salt-responsive flowering via FLOWERING LOCUS T in Arabidopsis. Planta 226:647–654PubMedCrossRefGoogle Scholar
  34. Kim SG, Lee AK, Yoon HK, Park CM (2008) A membrane-bound NAC transcription factor NTL8 regulates gibberellic acid-mediated salt signaling in Arabidopsis seed germination. Plant J 55:77–88PubMedCrossRefGoogle Scholar
  35. Lee SC, Lan WZ, Kim BG, Li L, Cheong YH, Pandey GK, Lu G, Buchanan BB, Luan S (2007) A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proc Natl Acad Sci USA 104:15959–15964PubMedCrossRefGoogle Scholar
  36. Lee HK, Cho SK, Son O, Xu Z, Hwang I, Kim WT (2009) Drought stress-induced RMA1h1, a ring membrane-anchor E3 ubiquitin ligase homolog, regulates aquaporin levels via ubiquitination in transgenic Arabidopsis plants. Plant Cell 21:622–641PubMedCrossRefGoogle Scholar
  37. Leonard WJ, O’Shea JJ (1998) JAKS AND STATS: biological Implications. Annu Rev Immunol 16:293–322PubMedCrossRefGoogle Scholar
  38. Lohrmann J, Harter K (2002) Plant two-component signaling systems and the role of response regulators. Plant Physiol 128:363–369PubMedCrossRefGoogle Scholar
  39. Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14:37–42PubMedCrossRefGoogle Scholar
  40. Maeda Y, Ide T, Koike M, Uchiyama Y, Kinoshita T (2008) GPHR is a novel anion channel critical for acidification and functions of the Golgi apparatus. Nat Cell Biol 10:1135–1145PubMedCrossRefGoogle Scholar
  41. McAinsh MR, Pittman JK (2009) Shaping the calcium signature. New Phytol 181:275–294PubMedCrossRefGoogle Scholar
  42. Morris ER, Walker JC (2003) Receptor-like protein kinases: the keys to response. Curr Opin Plant Biol 6:339–342PubMedCrossRefGoogle Scholar
  43. Murata N, Los DA (2006) Histidine kinase HiK33 is an important participant in cold-signal transduction in cyanobacteria. Physiol Plant 126:17–27CrossRefGoogle Scholar
  44. Negi J, Matsuda O, Nagasawa T, Oba Y, Takahashi H, Kawai-Yamada M, Uchimiya H, Hashimoto M, Iba K (2008) CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells. Nature 452:483–486PubMedCrossRefGoogle Scholar
  45. Nühse TS, Stensballe A, Jensen ON, Peck SC (2004) Phosphoproteomics of the Arabidopsis plasma membrane and a new phosphorylation site database. Plant Cell 16:2394–2405PubMedCrossRefGoogle Scholar
  46. Özcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573PubMedCrossRefGoogle Scholar
  47. Pandey GK (2008) Emergence of a novel calcium signaling pathway in plants: CBL-CIPK signaling network. Physiol Mol Biol Plants 14:51–68CrossRefGoogle Scholar
  48. Pandey GK, Cheong YH, Kim KN, Grant JJ, Li L, Hung W, D’Angelo C, Weinl S, Kudla J, Luan S (2004) The calcium sensor calcineurin B-like 9 modulates abscisic acid sensitivity and biosynthesis in Arabidopsis. Plant Cell 16:1912–1924PubMedCrossRefGoogle Scholar
  49. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148PubMedCrossRefGoogle Scholar
  50. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci USA 99:8436–8441PubMedCrossRefGoogle Scholar
  51. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci USA 99:9061–9066PubMedCrossRefGoogle Scholar
  52. Reiser V, Raitt DC, Saito H (2003) Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J Cell Biol 161:1035–1040PubMedCrossRefGoogle Scholar
  53. Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefGoogle Scholar
  54. Risk JM, Day CL, Macknight RC (2009) Reevaluation of abscisic acid-binding assays shows that G-protein-coupled receptor2 does not bind abscisic acid. Plant Physiol 150:6–11PubMedCrossRefGoogle Scholar
  55. Rodríguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport systems in plants. J Exp Bot 57:1149–1160PubMedCrossRefGoogle Scholar
  56. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 270:1660–1663PubMedCrossRefGoogle Scholar
  57. Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370:655–658PubMedCrossRefGoogle Scholar
  58. Schapire AL, Voigt B, Jasik J, Rosado A, Lopez-Cobollo R, Menzel D, Salinas J, Mancuso S, Valpuesta V, Baluska F, Botella MA (2008) Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20:3374–3388PubMedCrossRefGoogle Scholar
  59. Shi J, Kim KN, Ritz O, Albrecht V, Gupta R, Harter K, Luan S, Kudla J (1999) Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis. Plant Cell 11:2393–2405PubMedGoogle Scholar
  60. Su H, Balderas E, Vera-Estrella R, Golldack D, Quigley F, Zhao C, Pantoja O, Bohnert HJ (2003) Expression of the cation transporter McHKT1 in a halophyte. Plant Mol Biol 52:967–980PubMedCrossRefGoogle Scholar
  61. Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938PubMedCrossRefGoogle Scholar
  62. Sutter JU, Sieben C, Hartel A, Eisenach C, Thiel G, Blatt MR (2007) Abscisic acid triggers the endocytosis of the Arabidopsis KAT1 K+ channel and its recycling to the plasma membrane. Curr Biol 17:1396–1402PubMedCrossRefGoogle Scholar
  63. Tamura T, Hara K, Yamaguchi Y, Koizumi N, Sano H (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol 131:454–462PubMedCrossRefGoogle Scholar
  64. Temple BR, Jones AM (2007) The plant heterotrimeric G-protein complex. Annu Rev Plant Biol 58:249–266PubMedCrossRefGoogle Scholar
  65. Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628PubMedCrossRefGoogle Scholar
  66. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisiae. Plant Physiol 122:1249–1259PubMedCrossRefGoogle Scholar
  67. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedGoogle Scholar
  68. Vahisalu T, Kollist H, Wang Y-F, Nishimura N, Chan W-Y, Valerio G, Lamminmäki A, Brosché M, Moldau H, Desikan R, Schroeder JI, Kangasjärvi J (2008) SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling. Nature 452:487–491PubMedCrossRefGoogle Scholar
  69. Wohlbach DJ, Quirino BF, Sussman MR (2008) Analysis of the Arabidopsis histidine kinase ATH1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20:1101–1117PubMedCrossRefGoogle Scholar
  70. Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144:1416–1428PubMedCrossRefGoogle Scholar
  71. Xu J, Li HD, Chen LQ, Wang Y, Liu LL, He L, Wu WH (2006) A protein kinase, interacting with two calcineurin B-like proteins, regulates K+ transporter AKT1 in Arabidopsis. Cell 125:1347–1360PubMedCrossRefGoogle Scholar
  72. Yamazaki T, Kawamura Y, Minami A, Uemura M (2008) Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20:3389–3404PubMedCrossRefGoogle Scholar
  73. Yoon HK, Kim SG, Kim SY, Park CM (2008) Regulation of leaf senescence by NTL9-mediated osmotic stress signaling in Arabidopsis. Mol Cells 25:438–445PubMedGoogle Scholar
  74. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedCrossRefGoogle Scholar
  75. Zhu JK, Liu J, Xiong L (1998) enetic analysis of salt tolerance in Arabidopsis. Evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Bronwyn J. Barkla
    • 1
  • Omar Pantoja
    • 1
  1. 1.Instituto de BiotecnologíaUNAMCuernavacaMéxico

Personalised recommendations