Agent Based Evolutionary Dynamic Optimization

  • Yang Yan
  • Shengxiang Yang
  • Dazhi Wang
  • Dingwei Wang
Part of the Adaptation, Learning, and Optimization book series (ALO, volume 5)


Agent-based Evolutionary Search (AES) has attracted a growing interest from the evolutionary computation community in recent years due to its robust ability in solving large scale problems, ranging from online trading, disaster response to financial investment planning. In order to solve these problems, a great variety of intelligent techniques have been developed to improve the framework and efficiency of AES. This chapter investigates an AES algorithm in which the agents are updated and co-evolve to track dynamic optimum by imitating the exhibited feature of living organism. In the proposed algorithm, all agents live in a lattice like environment, where each agent is fixed on a lattice point. In order to increase the predefined energy function, individual agent is designed to compete with its neighbors and also acquire knowledge through cumulative information. For the purpose of maintaining the diversity of the population, random immigrants and adaptive primal dual mapping schemes are incorporated. Simulation experiments on a set of dynamic benchmark problems show the proposed AES algorithm can yield a better performance on dynamic optimization problems (DOPs) in comparison with several peer algorithms.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Annibale, G.D., Leone, R.D., Festa, P., Marchitto, E.: A New Meta-Heuristic for the Bus Driver Scheduling Problem: GRASP Combined with Rollout. In: Proc. of the, IEEE Symposium on Computational Intelligence in Scheduling, pp. 192–197 (2007)Google Scholar
  2. 2.
    Blackwell, T.: Particle swarms and population diversity. Soft Computing 9, 793–802 (2005)CrossRefMATHGoogle Scholar
  3. 3.
    Blackwell, T., Branke, J.: Multi swarms, exclusion, and anti-convergence in dynamic environments. IEEE Transactions on Evolutionary Computation 10(4), 459–472 (2006)CrossRefGoogle Scholar
  4. 4.
    Branke, J.: Memory enhanced evolutionary algorithms for changing optimization problems. In: Proc. of the 1999 IEEE Congress on Evolutionary Computation, pp. 1875–1882 (1999)Google Scholar
  5. 5.
    Branke, J., Kaußler, T., Schmidth, C., Schmeck, H.: A multi-population approach to dynamic optimization problems. In: Proc. of the 5th International Conference on Adaptive Computing in Design and Manufacturing, pp. 299–308 (2000)Google Scholar
  6. 6.
    Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A Fast Adaptive Memetic Algorithm for Online and Offline Control Design of PMSM Drives. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 37(1), 28–41 (2007)CrossRefGoogle Scholar
  7. 7.
    Chang, W.A., Ramakrishna, R.S.: Elitism-Based Compact Genetic Algorithms. IEEE Transactions on Evolutionary Computation 7(4), 367–385 (2003)CrossRefGoogle Scholar
  8. 8.
    Cobb, H.G., Grefenstette, J.J.: Genetic algorithms for tracking changing environments. In: Proc. of the 5th Int. Conf. on Genetic Algorithms, pp. 523–530 (1993)Google Scholar
  9. 9.
    Davidsson, P., Wernstedt, F.: A Multi-Agent System Architecture for Coordination of Just-in-time Production and Distribution. In: Proc. of the 17th ACM Symposium on Applied Computing, ACM SAC, UK, pp. 294–300 (2002)Google Scholar
  10. 10.
    Persson, J.A., Davidsson, P.: Integrated optimization and multi-agent technology for combined production and transportation planning. In: Proc. of the 38th Hawaii Int. Conf. on System Sciences, pp. 1–9. IEEE Press, NY (2005)Google Scholar
  11. 11.
    Ferber, J.: Multi-Agent Systems: An Introduction to Distributed Artificial Intelligenc. Addison-Wesley, New York (1999)Google Scholar
  12. 12.
    Gallardo, J.E., Cotta, C., Ferndez, A.J.: On the Hybridization of Memetic Algorithms with Branch-and-Bound Techniques. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 37(1), 77–83 (2007)CrossRefGoogle Scholar
  13. 13.
    Goldberg, D.E., Deb, K., Korb, B.: Messey genetic algorithm revisited: studies in mixed size and scale. Complex Systems 4(4), 145–444 (1990)Google Scholar
  14. 14.
    Grefenstette, J.: Genetic algorithms for changing environments. In: Proc. of the 2nd Int. Conf. on Parallel Problem Solving from Nature, pp. 137–144 (1992)Google Scholar
  15. 15.
    Hodgson, R.J.W.: Memetic Algorithms and the Molecular Geometry Optimization Problem. In: Proc. of the, Congress on Evolutionary Computation, pp. 625–632 (2000)Google Scholar
  16. 16.
    Jennings, N.R., Sycara, K., Wooldridge, M.: A roadmap of agent research and development. Autonomous Agents and Multi-Agent Systems Journal 6(4), 317–331 (1998)Google Scholar
  17. 17.
    Karageorgos, A., Mehandjiev, N., Weichhart, G., Hammerle, A.: Agent-based optimization of logistics and production planning. Engineering Application of Artificial Intelligence 16, 335–348 (2003)CrossRefGoogle Scholar
  18. 18.
    Kim, J.L., Ellis Jr., R.D.: Permutation-Based Elitist Genetic Algorithm for Optimization of Large-Sized Resource-Constrained Project Scheduling. Journal of Construction Engineering and Management 134(11), 904–913 (2008)CrossRefGoogle Scholar
  19. 19.
    Liu, B., Wang, L., Jin, Y.H.: An Effective PSO-Based Memetic Algorithm for Flow Shop Scheduling. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 37(1), 18–27 (2007)CrossRefGoogle Scholar
  20. 20.
    Liu, J., Tang, Y.Y., Cao, Y.C.: An evolutionary autonomous agents approach to image feature extraction. IEEE Transactions on Evolutionary Computation 1, 141–158 (1997)Google Scholar
  21. 21.
    Liu, J.: Autonomous Agents and Multi-Agent Systems. In: Explorations in Learning Self-Organization, and Adaptive Computation. World Scientific, Singapore (2001)Google Scholar
  22. 22.
    Manvi, S.S., Birje, M.N.: An agent-based resource allocation model for grid computing. In: Proc. of 2005 IEEE Int. Conf. on Services Computing, pp. 311–314. IEEE Press, NY (2005)CrossRefGoogle Scholar
  23. 23.
    Merz, P., Freisleben, B.: A Comparison of Memetic Algorithms, Tabu Search and Ant Colonies for the Quadratic Assignment Problem. In: Proc. of the 1999 Congress on Evolutionary Computation, pp. 2063–2070 (1999)Google Scholar
  24. 24.
    Mitchell, M., Forest, S., Holland, J.H.: The royal road for genetic algorithms: fitness landscape and GA performance. In: Proc. of the 1st Euro. Conf. on Artificial Life, pp. 245–254 (1992)Google Scholar
  25. 25.
    Neri, F., Toivanen, J., Makinen, R.A.E.: An adaptive evolutionary algorithm with intelligent mutation local searchers for designing multidrug therapies for HIV. Applied Intelligence 27(3), 219–235 (2007)CrossRefGoogle Scholar
  26. 26.
    Nguyer, H.D., Yoshihara, I., Yamamori, K., Yasunaga, M.: Implementation of an Effective Hybrid GA for Large-Scale Traveling Salesman Problems. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics 37(1), 92–99 (2007)CrossRefGoogle Scholar
  27. 27.
    Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall, Englewood Cliffs (1995)MATHGoogle Scholar
  28. 28.
    Tan, G., Zhou, D., Jiang, B.: MI Dioubate Elitism-based immune genetic algorithm and its application to optimization of complex multi-modal functions. Journal of Central South University of Technology 15(6), 845–852 (2008)CrossRefGoogle Scholar
  29. 29.
    Vavak, F., Fogarty, T.C.: A comparative study of steady state and generational genetic algorithms for use in nonstationary environments. In: Fogarty, T.C. (ed.) AISB-WS 1996. LNCS, vol. 1443, pp. 297–304. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  30. 30.
    Wang, H., Wang, D.: An improved primal-dual genetic algorithm for optimization in dynamic environments. In: King, I., Wang, J., Chan, L.-W., Wang, D. (eds.) ICONIP 2006. LNCS, vol. 4234, pp. 836–844. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  31. 31.
    Wang, H., Wang, D., Yang, S.: Triggered memory-based swarm optimization in dynamic environments. In: Giacobini, M. (ed.) EvoWorkshops 2007. LNCS, vol. 4448, pp. 637–646. Springer, Heidelberg (2007)Google Scholar
  32. 32.
    Whitley, L.D.: Fundamental principles of deception in genetic search. In: Foundations of Genetic Algorithms I, pp. 221–241 (1991)Google Scholar
  33. 33.
    Yang, S.: Adaptive non-uniform crossover based on statistics for genetic algorithms. In: Proc. of the 2002 Genetic and Evolutionary Computation Conference, pp. 650–657 (2002)Google Scholar
  34. 34.
    Yang, S.: Adaptive mutation using statistics mechanism for genetic algorithms. In: Coenen, F., Preece, A., Macintosh, A. (eds.) Research and Development in Intelligent Systems, pp. 19–32. Springer, London (2003)Google Scholar
  35. 35.
    Yang, S.: PDGA: the primal-dual genetic algorithm. In: Abraham, A., Koppen, M., Franke, K. (eds.) Design and Application of Hybrid Intelligent Systems, pp. 214–223. IOS Press, Sydney (2003)Google Scholar
  36. 36.
    Yang, S.: Non-stationary problem optimization using the primal-dual genetic algorithm. In: Proc. of the 2003 Congress on Evolutionary Computation, vol. 3, pp. 2246–2253 (2003)Google Scholar
  37. 37.
    Yang, S.: Memory-based immigrants for genetic algorithms in dynamic environments. In: Proc. of the 2005 Genetic and Evolutionary Computation Conference, vol. 2, pp. 1115–1122 (2005)Google Scholar
  38. 38.
    Yang, S., Yao, X.: Experimental study on population-based incremental learning algorithms for dynamic optimization problems. Soft Computing 9(11), 815–834 (2005)CrossRefMATHGoogle Scholar
  39. 39.
    Zhong, W.C., Liu, J., Xue, M.Z., Jiao, L.C.: A multiagent genetic algorithm for global numerical optimization. IEEE Transactions on System, Man, and Cybernetics-Part B: Cybernetics 34(2), 1128–1141 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Yang Yan
    • 1
  • Shengxiang Yang
    • 2
  • Dazhi Wang
    • 1
  • Dingwei Wang
    • 1
  1. 1.School of Information Science and EngineeringNortheastern UniversityShenyangChina
  2. 2.Department of Computer ScienceUniversity of LeicesterLeicesterUnited Kingdom

Personalised recommendations