Advertisement

VISPLORE: Exploring Particle Swarms by Visual Inspection

  • Namrata Khemka
  • Christian Jacob
Part of the Adaptation, Learning, and Optimization book series (ALO, volume 5)

Abstract

We describe VISPLORE, a visualization and experimentation environment for population-based search algorithms. Using particle swarm optimization (PSO) as an example, we demonstrate the advantages of an interactive visualization tool for multi-dimensional data. VISPLORE greatly supports the analysis of time dependent data sets, as they are produced by evolutionary optimization algorithms. We demonstrate various multi-dimensional visualization techniques, as built into VISPLORE, which help to understand the dynamics of stochastic search algorithms.

Keywords

Particle Swarm Optimization Search Space Particle Swarm Density Plot Particle Swarm Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amor, H.B., Rettinger, A.: Intelligent exploration for genetic algorithms: using self-organizing maps in evolutionary computation. In: GECCO ’05: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1531–1538. ACM, New York (2005), http://doi.acm.org/10.1145/1068009.1068250 CrossRefGoogle Scholar
  2. 2.
    Carpendale, S., Agarawala, A.: Phyllotrees: Harnessing nature’s phyllotactic patterns for tree layout. In: INFOVIS 2004: Proceedings of the IEEE Symposium on Information Visualization, p. 215.3. IEEE Computer Society, Washington (2004), http://dx.doi.org/10.1109/INFOVIS.2004.53
  3. 3.
    Chipperfield, A., Fleming, P., Pohlheim, H., Fonseca, C.: Genetic algorithm toolbox for use with matlab, http://citeseer.ist.psu.edu/502345.html
  4. 4.
    Collins, T.D.: Understanding evolutionary computing: A hands on approach. In: 1998 IEEE Int. Conf. on Evolutionary Computation (ICEC), Piscataway, NY (1998), http://citeseer.ist.psu.edu/collins97understanding.html
  5. 5.
    Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in genetic programming. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, Springer, Heidelberg (2003)Google Scholar
  6. 6.
    Fanea, E., Carpendale, S., Isenberg, T.: An interactive 3d integration of parallel coordinates and star glyphs. In: INFOVIS 2005: Proceedings of the Proceedings of the 2005 IEEE Symposium on Information Visualization, p. 20. IEEE Computer Society, Washington (2005), http://dx.doi.org/10.1109/INFOVIS.2005.5 CrossRefGoogle Scholar
  7. 7.
    Fühner, T., Jacob, C.: Evolvision - an evolvica visualization tool. In: Proceedings of the Genetic and Evolutionary Computation Conference (2001)Google Scholar
  8. 8.
    Hart, E., Ross, P.: Gavel - a new tool for genetic algorithm visualization. Evolutionary Computation 5(4), 335–348 (2001), doi:10.1109/4235.942528CrossRefGoogle Scholar
  9. 9.
    Mathematica website, http://www.wolfram.com
  10. 10.
    Inselberg, A.: Multidimensional detective. In: INFOVIS 1997: Proceedings of the 1997 IEEE Symposium on Information Visualization (InfoVis 1997), p. 100. IEEE Computer Society, Washington (1997)Google Scholar
  11. 11.
    Jacob, C.: Illustrating Evolutionary Computation with Mathematica. Morgan Publishers, San Francisco (2001)Google Scholar
  12. 12.
    Jacob, C., Khemka, N.: Particle swarm optimization in mathematica an exploration kit for evolutionary optimization. In: Proceedings of the Sixth International Mathematica Symposium (2004)Google Scholar
  13. 13.
    Keim, D.A., Kriegel, H.: VisDB: Database exploration using multidimensional visualization. Computer Graphics and Applications (1994), http://citeseer.ist.psu.edu/keim94visdb.html
  14. 14.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the Sixth International Symposium on Micromachine and Human Science (1995)Google Scholar
  15. 15.
    Khemka, N.: Comparing particle swarm optimization and evolution strategies: Benchmarks and application. Master’s thesis. University of Calgary (2005)Google Scholar
  16. 16.
    Khemka, N., Jacob, C.: A comparative study between particle swarms and evolution strategies on benchmarks and soccer kick simulation. IEEE Transactions on Evolutionary Computation (2005)Google Scholar
  17. 17.
    Khemka, N., Jacob, C.: Visualization strategies for evolutionary algorithms. In: Proceedings of the Ninth International Mathematica Symposium (2008)Google Scholar
  18. 18.
    Khemka, N., Jacob, C.: What hides in dimension x? a quest for visualizing particle swarms. In: ANTS Conference, pp. 191–202 (2008)Google Scholar
  19. 19.
    Moniz, R.D., Jacob, C.: Interactively evolving fractals using grid computing (submitted). In: EvoWorkshops (2009)Google Scholar
  20. 20.
    Pohlheim, H.: Visualization of evolutionary algorithms - set of standard techniques and multidimensional visualization. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, vol. 1, pp. 533–540. Morgan Kaufmann, Orlando (1999), http://citeseer.ist.psu.edu/pohlheim99visualization.html Google Scholar
  21. 21.
    Shi, Y., Eberhart, R.: Parameter selection in particle swarm optimization. In: Evolutionary Programming VII: Proceedings of the Seventh Annual Conference on Evolutionary Programming, New York, pp. 591–600 (1998)Google Scholar
  22. 22.
    Shi, Y., Eberhart, R.: Empirical study of particle swarm optimization. In: Congress on Evolutionary Computation (1999)Google Scholar
  23. 23.
    Wu, A.S., Jong, K.A.D., Burke, D.S., Grefenstette, J.J., Ramsey, C.L.: Visual analysis of evolutionary algorithms. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, vol. 2, pp. 1419–1425. IEEE Press, Washington D.C (1999), http://citeseer.ist.psu.edu/wu99visual.html Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Namrata Khemka
    • 1
  • Christian Jacob
    • 2
  1. 1.Dept. of Computer ScienceUniversity of CalgaryCalgaryCanada
  2. 2.Dept. of Computer Science, Dept. of Biochemistry and Molecular BiologyUniversity of CalgaryCalgaryCanada

Personalised recommendations