Coordinating Resource Usage through Adaptive Service Provisioning in Wireless Sensor Networks

  • Chien-Liang Fok
  • Gruia-Catalin Roman
  • Chenyang Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6116)


Wireless sensor networks (WSNs) exhibit high levels of network dynamics and consist of devices with limited energy. This results in the need to coordinate applications not only at the functional level, as is traditionally done, but also in terms of resource utilization. In this paper, we present a middleware that does this using adaptive service provisioning. Novel service binding strategies automatically adapt application behavior when opportunities for energy savings surface, and switch providers when the network topology changes. The former is accomplished by providing limited information about the energy consumption associated with using various services, systematically exploiting opportunities for sharing service invocations, and exploiting the broadcast nature of wireless communication in WSNs. The middleware has been implemented and evaluated on two disparate WSN platforms, the TelosB and Imote2. Empirical results show that adaptive service provisioning can enable energy-aware service binding decisions that result in increased energy efficiency and significantly increase service availability, while imposing minimal additional burden on the application, service, and device developers. Two applications, medical patient monitoring and structural health monitoring, demonstrate the middleware’s efficacy.


  1. 1.
    Rock, A.: Arch Rock PhyNetTM,
  2. 2.
    Chipara, O., Brooks, C., Bhattacharya, S., Lu, C., Chamberlain, R., Roman, G.-C., Bailey, T.C.: Reliable data collection from mobile users for real-time clinical monitoring. In: AMIA Annual Symp. (November 2009)Google Scholar
  3. 3.
    Costa, P., Mottola, L., Murphy, A.L., Picco, G.P.: TeenyLIME: transiently shared tuple space middleware for wireless sensor networks. In: MidSens 2006, pp. 43–48 (2006)Google Scholar
  4. 4.
    Crossbow Technologies. Imote2 datasheet,
  5. 5.
    Cutsem, T.V., Dedecker, J., Meuter, W.D.: Object-oriented coordination in mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 231–248. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dutta, P., Feldmeier, M., Paradiso, J., Culler, D.: Energy metering for free: Augmenting switching regulators for real-time monitoring. In: IPSN 2008, pp. 283–294 (2008)Google Scholar
  7. 7.
    Fok, C.-L., Roman, G.-C., Lu, C.: Adaptive service provisioning for wireless sensor networks. Technical Report WUCSE-2009-83, Washington University in St. Louis (December 2009)Google Scholar
  8. 8.
    Fok, C.-L., Roman, G.-C., Lu, C.: Enhanced Coordination in Sensor Networks through Flexible Service Provisioning. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 66–85. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Frey, D., Roman, G.-C.: Context-aware publish subscribe in mobile ad hoc networks. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 37–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc language: A holistic approach to networked embedded systems. In: PLDI 2003, pp. 1–11. ACM, New York (2003)CrossRefGoogle Scholar
  11. 11.
    Gnawali, O., Fonseca, R., Jamieson, K., Moss, D., Levis, P.: Collection tree protocol. In: SenSys 2009 (November 2009)Google Scholar
  12. 12.
    Hackmann, G., Chipara, O., Lu, C.: Robust topology control for indoor wireless sensor networks. In: SenSys 2008, pp. 57–70 (2008)Google Scholar
  13. 13.
    Handorean, R., Sen, R., Hackmann, G., Roman, G.-C.: Supporting predictable service provision in manets via context aware session management. Int. Journal of Web Services Research 3(3), 1–26 (2006)Google Scholar
  14. 14.
    Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for networked sensors. SIGPLAN Not. 35(11), 93–104 (2000)CrossRefGoogle Scholar
  15. 15.
    Kushwaha, M., Amundson, I., Koutsoukos, X., Neema, S., Sztipanovits, J.: Oasis: A programming framework for service-oriented sensor networks. In: COMSWARE 2007 (2007)Google Scholar
  16. 16.
    Meshkova, E., Riihijarvi, J., Oldewurtel, F., Jardak, C., Mahonen, P.: Service-oriented design methodology for wireless sensor networks: A view through case studies. In: SUTC 2008, pp. 146–153 (2008)Google Scholar
  17. 17.
    Polastre, J., Szewczyk, R., Culler, D.: Telos: enabling ultra-low power wireless research. In: IPSN 2005, p. 48 (2005)Google Scholar
  18. 18.
    Priyantha, N.B., Kansal, A., Goraczko, M., Zhao, F.: Tiny web services: design and implementation of interoperable and evolvable sensor networks. In: SenSys 2008, pp. 253–266 (2008)Google Scholar
  19. 19.
    Scholz, A., Buckl, C., Sommer, S., Kemper, A., Knoll, A., Heuer, J., Schmitt, A.: eSOA - service oriented architectures adapted for embedded networks. In: IDIN 2009, June 2009, pp. 599–605 (2009)Google Scholar
  20. 20.
    Sen, R., Roman, G.-C., Gill, C.D.: Cian: A workflow engine for manets. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 280–295. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    Singh, A., Ramakrishnan, C.R., Smolka, S.A.: A process calculus for mobile ad hoc networks. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS, vol. 5052, pp. 296–314. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  22. 22.
    Viroli, M., Casadei, M.: Biochemical tuple spaces for self-organising coordination. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 143–162. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Chien-Liang Fok
    • 1
  • Gruia-Catalin Roman
    • 1
  • Chenyang Lu
    • 1
  1. 1.Dept. of Computer Science and EngineeringWashington University in St. LouisSaint LouisUSA

Personalised recommendations