Eigenmodes of Surface Energies for Shape Analysis

  • Klaus Hildebrandt
  • Christian Schulz
  • Christoph von Tycowicz
  • Konrad Polthier
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6130)

Abstract

In this work, we study the spectra and eigenmodes of the Hessian of various discrete surface energies and discuss applications to shape analysis. In particular, we consider a physical model that describes the vibration modes and frequencies of a surface through the eigenfunctions and eigenvalues of the Hessian of a deformation energy, and we derive a closed form representation for the Hessian (at the rest state of the energy) for a general class of deformation energies. Furthermore, we design a quadratic energy, such that the eigenmodes of the Hessian of this energy are sensitive to the extrinsic curvature of the surface.

Based on these spectra and eigenmodes, we derive two shape signatures. One that measures the similarity of points on a surface, and another that can be used to identify features of the surface. In addition, we discuss a spectral quadrangulation scheme for surfaces.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baraff, D., Witkin, A.: Large steps in cloth simulation. In: Proceedings of ACM SIGGRAPH, pp. 43–54 (1998)Google Scholar
  2. 2.
    Barbič, J., James, D.L.: Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Transactions on Graphics 24(3), 982–990 (2005)CrossRefGoogle Scholar
  3. 3.
    Bridson, R., Marino, S., Fedkiw, R.: Simulation of clothing with folds and wrinkles. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 28–36 (2003)Google Scholar
  4. 4.
    Choi, M.G., Ko, H.S.: Modal warping: Real-time simulation of large rotational deformation and manipulation. IEEE Transactions on Visualization and Computer Graphics 11(1), 91–101 (2005)CrossRefGoogle Scholar
  5. 5.
    Desbrun, M., Hirani, A.N., Leok, M., Marsden, J.E.: Discrete exterior calculus (2005), arXiv:math/0508341, arXiv preprintGoogle Scholar
  6. 6.
    Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Transactions on Graphics 25(3), 1057–1066 (2006)CrossRefGoogle Scholar
  7. 7.
    Dziuk, G.: Finite elements for the Beltrami operator on arbitrary surfaces. In: Partial Differential Equations and Calculus of Variations. Lecture Notes in Mathematics, vol. 1357, pp. 142–155. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  8. 8.
    Edeslbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse-Smale complexes for piecewise linear 2-manifolds. Discrete Computational Geometry, 87–107 (2003)Google Scholar
  9. 9.
    Garg, A., Grinspun, E., Wardetzky, M., Zorin, D.: Cubic Shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 91–98 (August 2007)Google Scholar
  10. 10.
    Gebal, K., Bærentzen, J.A., Aanæs, H., Larsen, R.: Shape analysis using the auto diffusion function. Computer Graphics Forum 28(5), 1405–1413 (2009)CrossRefGoogle Scholar
  11. 11.
    Grinspun, E., Hirani, A.N., Desbrun, M., Schröder, P.: Discrete shells. In: Proceedings of ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 62–67 (2003)Google Scholar
  12. 12.
    Hauser, K.K., Shen, C., O’Brien, J.F.: Interactive deformation using modal analysis with constraints. In: Graphics Interface, pp. 247–256 (2003)Google Scholar
  13. 13.
    Hildebrandt, K., Polthier, K., Wardetzky, M.: On the convergence of metric and geometric properties of polyhedral surfaces. Geometricae Dedicata 123, 89–112 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Huang, J., Zhang, M., Ma, J., Liu, X., Kobbelt, L., Bao, H.: Spectral quadrangulation with orientation and alignment control. ACM Transactions on Graphics 27(5), 1–9 (2008)CrossRefGoogle Scholar
  15. 15.
    Huang, Q., Wicke, M., Adams, B., Guibas, L.: Shape decomposition using modal analysis. Computer Graphics Forum 28(2), 407–416 (2009)CrossRefGoogle Scholar
  16. 16.
    Lévy, B., Zhang, H.: Spectral mesh processing. In: ACM SIGGRAPH ASIA Courses, pp. 1–47 (2009)Google Scholar
  17. 17.
    Ovsjanikov, M., Sun, J., Guibas, L.: Global intrinsic symmetries of shapes. Computer Graphics Forum 27(5), 1341–1348 (2008)CrossRefGoogle Scholar
  18. 18.
    Pentland, A., Williams, J.: Good vibrations: modal dynamics for graphics and animation. In: Proceedings of ACM SIGGRAPH, pp. 215–222 (1989)Google Scholar
  19. 19.
    Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)MATHMathSciNetGoogle Scholar
  20. 20.
    Polthier, K.: Computational aspects of discrete minimal surfaces. In: Hass, J., Hoffman, D., Jaffe, A., Rosenberg, H., Schoen, R., Wolf, M. (eds.) Global Theory of Minimal Surfaces, Clay Foundation (2005)Google Scholar
  21. 21.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-spectra as fingerprints for shape matching. In: Proceedings of the ACM Symposium on Solid and Physical Modeling, pp. 101–106 (2005)Google Scholar
  22. 22.
    Reuter, M., Wolter, F.E., Peinecke, N.: Laplace-Beltrami spectra as ”Shape-DNA” of surfaces and solids. Computer-Aided Design 38(4), 342–366 (2006)CrossRefGoogle Scholar
  23. 23.
    Rustamov, R.M.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 225–233 (2007)Google Scholar
  24. 24.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Manchester University Press (1992)Google Scholar
  25. 25.
    Sorkine, O., Alexa, M.: As-rigid-as-possible surface modeling. In: Proceedings of Eurographics/ACM SIGGRAPH Symposium on Geometry Processing, pp. 109–116 (2007)Google Scholar
  26. 26.
    Sun, J., Ovsjanikov, M., Guibas, L.J.: A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum 28(5), 1383–1392 (2009)CrossRefGoogle Scholar
  27. 27.
    Vallet, B., Lévy, B.: Spectral geometry processing with manifold harmonics. Computer Graphics Forum (2008)Google Scholar
  28. 28.
    Wardetzky, M., Bergou, M., Harmon, D., Zorin, D., Grinspun, E.: Discrete quadratic curvature energies. Computer Aided Geometric Design 24(8-9), 499–518 (2007)MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Zhang, H., van Kaick, O., Dyer, R.: Spectral mesh processing. Computer Graphics Forum (to appear 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Klaus Hildebrandt
    • 1
  • Christian Schulz
    • 1
  • Christoph von Tycowicz
    • 1
  • Konrad Polthier
    • 1
  1. 1.Freie Universität Berlin 

Personalised recommendations