Field and Service Robotics pp 113-123

Part of the Springer Tracts in Advanced Robotics book series (STAR, volume 62)

Passive, Long-Range Detection of Aircraft: Towards a Field Deployable Sense and Avoid System

  • Debadeepta Dey
  • Christopher Geyer
  • Sanjiv Singh
  • Matt Digioia

Introduction

Unmanned Aerial Vehicles (UAVs) typically fly blind with operators in distant locations. Most UAVs are too small to carry a traffic collision avoidance system (TCAS) payload or transponder. Collision avoidance is currently done by flight planning, use of ground or air based human observers and segregated air spaces. US lawmakers propose commercial unmanned aerial systems access to national airspace (NAS) by 30th September 2013. UAVs must not degrade the existing safety of the NAS, but the metrics that determine this have to be fully determined yet. It is still possible to state functional requirements and determine some performance minimums. For both manned and unmanned aircraft to fly safely in the same airspace UAVs will need to detect other aircraft and follow the same rules as human pilots.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Standard specification for design and performance of an airborne sense-and-avoid system, f2411-04. ASTM International, West Conshohocken, PA (2004)Google Scholar
  2. 2.
    Bernier, R., Bissonnette, M., Poitevin, P.: Dsa radar - development report. In: UAVSI 2005 (2005)Google Scholar
  3. 3.
    Bradski, G.: The OpenCV Library. Doctor Dobbs Journal 25(11), 120–126 (2000)Google Scholar
  4. 4.
    Carnie, R., Walker, R., Corke, P.: Image processing algorithms for UAV ”sense and avoid”. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006., pp. 2848–2853 (2006)Google Scholar
  5. 5.
    Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and other kernel-based learning methods. Cambridge University Press, Cambridge (2000)Google Scholar
  6. 6.
    Duke, E., Vanderpool, C., Duke, W.: Turning pinoccio into a real boy: A turing test for UAV operations. In: AIAA Infotech at Aerospace 2007 Conference and Exhibit (2007)Google Scholar
  7. 7.
    Ebdon, M.D., Regan, M.J.: Sense-and-avoid requirement for remotely operated aircraft, roa (2004)Google Scholar
  8. 8.
    Federal Aviation Administration: Order 7610.4 (2006)Google Scholar
  9. 9.
    Fernandez, M.F., Aridgides, T., Bray, D.: Detecting and tracking low-observable targets using IR. In: Proceedings of SPIE, vol. 1305, p. 193 (1990)Google Scholar
  10. 10.
    Frazzoli, E., Dahleh, M.A., Feron, E.: Real-time motion planning for agile autonomous vehicles. Journal of Guidance Control and Dynamics 25(1), 116–129 (2002)CrossRefGoogle Scholar
  11. 11.
    Gandhi, T., Yang, M.-T., Kasturi, R., Camps, O.I., Coraor, L.D., McCandless, J.: Detection of obstacles in the flight path of an aircraft. In: CVPR, pp. 2304–2311. IEEE Computer Society, Los Alamitos (2000)Google Scholar
  12. 12.
    Geyer, C., Dey, D., Singh, S.: Prototype Sense-and-Avoid System for UAVs. Technical Report CMU-RI-TR-09-09, Robotics Institute, Carnegie Mellon University, Pittsburg (2009)Google Scholar
  13. 13.
    McCalmont, J., Utt, J., Deschenes, M.: Detect and Avoid Technology Demonstration. In: Proceedings of the American Institute of Aeronautics and Astronautics Infotech (2002)Google Scholar
  14. 14.
    McCandless, J.: Detection of aircraft in video sequences using a predictive optical flow algorithm. Optical Engineering 38, 523 (1999)CrossRefGoogle Scholar
  15. 15.
    Office of the Secretary of Defense: Airspace integration plan for unmanned aviation (2004)Google Scholar
  16. 16.
    Papadimitriou, C., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications (1998)Google Scholar
  17. 17.
    Petridis, S., Geyer, C., Singh, S.: Learning to detect aircraft at low resolutions. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 474–483. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Schaeffer, R.: A standards-based approach to sense-and-avoid technology. In: AIAA 3rd Unmanned Unlimited Technical Conference, Workshop and Exhibit (2004)Google Scholar
  19. 19.
    Shakernia, O., Chen, W., Raska, V.: Passive ranging for UAV sense and avoid applications. In: AIAA’s Infotech at Aerospace (2005)Google Scholar
  20. 20.
    Utt, J., McCalmont, J., Deschenes, M.: Development of a sense and avoid system. In: AIAA Infotech at Aerospace (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Debadeepta Dey
    • 1
  • Christopher Geyer
    • 1
  • Sanjiv Singh
    • 2
  • Matt Digioia
    • 3
  1. 1.Carnegie Mellon UniversityPittsburghUSA
  2. 2.Carnegie Mellon University
  3. 3.The Penn State Electro-Optics CenterFreeportUSA

Personalised recommendations