FASTS: FAcets Structured Tag Space – A Novel Approach to Organize and Reuse Social Bookmarking Tags

  • Sudha Ram
  • Wei Wei
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6105)


Social bookmarking tools are generating an enormous pool of metadata describing and categorizing web resources. The value of these metadata in the form of tags can be fully realized only when they are shared and reused for web search and retrieval. The research described in this paper proposes a facet classification mechanism, and a tag relationship ontology to organize tags into a meaningful and intuitively useful structure. We have implemented a web-based prototype system to effectively search and browse bookmarked web resources using this approach. We collected real tag data from for a wide range of popular domains. We analyzed, processed, and organized these tags to demonstrate the effectiveness and utility of our approach for tag organization and reuse.


tag social bookmarking facet semantics ontology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angeletou, S., Sabou, M., Motta, E.: Semantically Enriching Folksonomies with FLOR. In: 1st International Workshop on Collective Semantics: Collective Intelligence & the Semantic Web (CISWeb 2008), European Semantic Web Conference, pp. 65–79 (2008)Google Scholar
  2. 2.
    Batagelj, V., Zaversnik, M.: Generalized Cores (2002),
  3. 3.
    Begelman, G., Keller, P., Smadja, F.: Automated Tag Clustering: Improving search and exploration in the tag space. In: The Collaborative Web Tagging Workshop at WWW 2006, Edinburgh, Scotland (2006)Google Scholar
  4. 4.
    Bergholtz, M., Johannesson, P.: Classifying the Semantics of Relationships in Conceptual Modeling by Categorization of Roles. In: 6th International Workshop on Applications of Natural Language to Information Systems, pp. 199–203. GI (2001)Google Scholar
  5. 5.
    Bonino, D., Corno, F., Farinetti, L.: FaSet: A Set Theory Model for Faceted Search. In: IEEE/WIC/ACM International Joint Conferences on Web Intelligence and Intelligent Agent Technologies, 2009. WI-IAT 2009, pp. 474–481 (2009)Google Scholar
  6. 6.
    Brachman, R.J.: What IS-A Is and Isn’t: An Analysis of Taxonomic Links in Semantic Networks. Computer 16(10), 30–36 (1983)CrossRefGoogle Scholar
  7. 7.
    Brickley, D., Miller, L.: FOAF Vocabulary Specification 0.9 (2007),
  8. 8.
    Chaffin, R., Herrmann, D.J., Winston, M.: An Empirical Taxonomy of Part-Whole Relations: Effects of Part-Whole Relation Type on Relation Identification. Language and Cognitive Processes 3(1), 17–48 (1988)CrossRefGoogle Scholar
  9. 9.
    Golder, S.A., Huberman, B.A.: Usage Patterns of Collaborative Tagging Systems. Journal of Information Science 32(2), 198–208 (2006)CrossRefGoogle Scholar
  10. 10.
    Gruber, T.: Ontology of Folksonomy: a Mash-up of Apples and Oranges. International Journal on Semantic Web and Information Systems 3(1), 1–11 (2007)Google Scholar
  11. 11.
    Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information System Research. MIS Quarterly 28(1), 75–105 (2004)Google Scholar
  12. 12.
    Heymann, P., Koutrika, G., Garcia-Molina, H.: Can Social Bookmarking Improve Web Search? In: International Conference on Web Search and Web Data Mining, Palo Alto, California, USA, pp. 196–205. ACM Press, New York (2008)Google Scholar
  13. 13.
    Kim, H.L., Yang, S., Song, S.-J., Breslin, J., Kim, H.: Tag Mediated Society with SCOT Ontology. In: The 5th Semantic Web Challenge Workshop at the 6th International Semantic Web Conference (ISWC 2007) (2007)Google Scholar
  14. 14.
    Krotzsch, M., Vrandecic, D., Volkel, M., Haller, H., Studer, R.: Semantic Wikipedia. Web Semantics: Science, Services and Agents on the World Wide Web 5(4), 251–261 (2007)CrossRefGoogle Scholar
  15. 15.
    Laniado, D., Eynard, D., Colombetti, M.: Using WordNet to Turn a Folksonomy into a Hierarchy of Concepts. In: Semantic Web Application and Perspectives-The 4th Italian Semantic Web Workshop, Bari, Italy, pp. 192–201 (2007)Google Scholar
  16. 16.
    Marlow, C., Naaman, M., Boyd, D., Davis, M.: HT06, tagging paper, taxonomy, Flickr, academic article, to read. In: Proceedings of the Seventeenth Conference on Hypertext and Hypermedia, Odense, Denmark, pp. 31–40. ACM, New York (2006)CrossRefGoogle Scholar
  17. 17.
    Mika, P.: Ontologies Are Us: A Unified Model of Social Networks and Semantics. Journal of Web Semantics 5(1), 5–15 (2007)MathSciNetGoogle Scholar
  18. 18.
  19. 19.
    Passant, A., Laublet, P.: Meaning of A Tag: A Collaborative Approach to Bridge the Gap Between Tagging and Linked Data. In: WWW 2008 Workshop Linked Data on the Web (LDOW 2008), Beijing, China (2008)Google Scholar
  20. 20.
    Schmitz, C., Hotho, A., Jaschke, R., Stumme, G.: Mining Association Rules in Folksonomies. In: Batagelj, V., Bock, H.-H., Ferligoj, A., Ziberna, A. (eds.) Studies in Classification, Data Analysis, and Knowledge Organization, pp. 261–270. Springer, Heidelberg (2006)Google Scholar
  21. 21.
    Sowa, J.F.: Knowledge Representation : Logical, Philosophical, and Computational Foundations. Brooks/Cole, Pacific Grove (2000) Google Scholar
  22. 22.
    Specia, L., Motta, E.: Integrating Folksonomies with the Semantic Web. In: 4th European Semantic Web Conference, Innsbruck, Austria, pp. 624–639 (2007)Google Scholar
  23. 23.
    Strohmaier, M.: Purpose Tagging: Capturing User Intent to Assist Goal-Oriented Social Search. In: The 2008 ACM Workshop on Search in Social Media, Napa Valley, California, USA, pp. 35–42. ACM, New York (2008)CrossRefGoogle Scholar
  24. 24.
    Ward, J.H.: Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association 58(301), 236–244 (1963)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Yang, J., Matsuo, Y., Ishizuka, M.: An Augmented Tagging Scheme with Triple Tagging and Collective Filtering. In: IEEE/WIC/ACM International Conference on Web Intelligence, Silicon Valley, USA, pp. 35–38 (2007)Google Scholar
  26. 26.
    Yee, K.-P., Swearingen, K., Li, K., Hearst, M.: Faceted Metadata for Image Search and Browsing. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Ft. Lauderdale, Florida, USA, pp. 401–408. ACM, New York (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sudha Ram
    • 1
  • Wei Wei
    • 1
  1. 1.Department of MIS, Eller College of ManagementThe University of ArizonaTucsonUSA

Personalised recommendations