Stability of Genetic Regulatory Networks with Multiple Delays via a New Functional

  • Zhenwei Liu
  • Huaguang Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6063)

Abstract

This paper studies the stability problem of a class of genetic regulatory networks (GRN) with multiple delays. By using a novel Lyapunov-Krasovskii (L-K) functional based on line integral, the delay-dependent asymptotical stability criterion is first proposed for GRN with multiple delays. The obtained stability result is easy to be checked by linear matrix inequality (LMI) and improve upon the existing ones. Then, a numerical example is given to verify the effectiveness of the proposed criterion.

Keywords

Genetic regulatory networks (GRN) Multiple delays  Asymptotical stability Linear matrix inequality (LMI) Line integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu, W., Lü, J., Chen, G., Duan, Z., Zhou, Q.: Estimating Uncertain Delayed Genetic Regulatory Networks: An Adaptive Filtering Approach. IEEE Trans. Autom. Contr. 54, 892–897 (2009)CrossRefGoogle Scholar
  2. 2.
    Becskel, A., Serrano, L.: Engineering Stability in Gene Networks by Autoregulation. Nature 405, 590–593 (2000)CrossRefGoogle Scholar
  3. 3.
    Chen, L., Aihara, K.: Stability of Genetic Regulatory Networks with Time Delay. IEEE Trans. Circu. Syst. I: Fundam. Theory Appl. 49, 602–608 (2002)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Ren, F., Cao, J.: Asymptotic and Robust Stability of Genetic Regulatory Networks with Time-Varying Delays. Neurocomputing 71, 834–842 (2008)CrossRefGoogle Scholar
  5. 5.
    Cao, J., Ren, F.: Exponential Stability of Discrete-Time Genetic Regulatory Networks with Delays. IEEE Trans. Neural Netw. 19, 520–523 (2008)CrossRefGoogle Scholar
  6. 6.
    Wang, Z., Gao, H., Cao, J., Liu, X.: On Delayed Genetic Regulatory Networks With Polytopic Uncertainties: Robust Stability Analysis. IEEE Trans. Nanobioscience 7, 154–163 (2008)CrossRefGoogle Scholar
  7. 7.
    Mahaffy, J.M., Pao, C.V.: Models of Genetic Control by Repression with Time Delays and Spatial Effects. J. Math. Biol. 20, 39–57 (1984)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Monk, N.A.M.: Oscillatory Expression of Hes1, p53, and NF-κ B Driven by Transcriptional Time Delays. Current Biol. 13, 1409–1413 (2003)CrossRefGoogle Scholar
  9. 9.
    Yuh, C.-H., Bolouri, H., Davidson, E.H.: Genomic Cis-Regulatory Logic: Experimental and Computational Analysis of Asea Urchin Gene. Science 279, 1896–1902 (1998)CrossRefGoogle Scholar
  10. 10.
    Kalir, S., Mangan, S., Alon, U.: A Coherent Feed-Forward Loop with A SUM Input Function Prolongs Flagella Expression in Escherichia Coli. Molecular Syst. Biol. (2005), doi:10.1038/msb4100010Google Scholar
  11. 11.
    Hubbard, J., Hubbard, B.B.: Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach, 3rd edn., Matrix, New York, USA (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhenwei Liu
    • 1
  • Huaguang Zhang
    • 1
  1. 1.College of Information Science and EngineeringNortheastern UniversityShenyangP.R. China

Personalised recommendations