Advertisement

Generalizations and Extensions of Redactable Signatures with Applications to Electronic Healthcare

  • Daniel Slamanig
  • Stefan Rass
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6109)

Abstract

Redactable signatures allow for altering signed documents, retaining the validity of the signature without interaction with the original signer. In their plain form, such schemes are designed for documents having an unspecific structure, i.e. documents are simply considered as binary strings. In this work, we generalize the concept of redactable signatures towards documents that inherently provide a structure and investigate the security of our construction. Furthermore, we present extensions to our scheme, adding features not commonly provided by other redactable signature schemes. Additionally, various applications in healthcare are discussed, supporting the applicability and usability of our construction.

Keywords

Hash Function Signature Scheme Commitment Scheme Message Block Hiding Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Steinfeld, R., Bull, L., Zheng, Y.: Content Extraction Signatures. In: Kim, K.-c. (ed.) ICISC 2001. LNCS, vol. 2288, pp. 285–304. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Johnson, R., Molnar, D., Song, D., Wagner, D.: Homomorphic Signature Schemes. In: Preneel, B. (ed.) CT-RSA 2002. LNCS, vol. 2271, pp. 244–262. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  3. 3.
    Merkle, R.C.: A Certified Digital Signature. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)Google Scholar
  4. 4.
    Golle, P.: Revisiting the Uniqueness of Simple Demographics in the US Population. In: WPES 2006, pp. 77–80. ACM, New York (2006)CrossRefGoogle Scholar
  5. 5.
    Ciriani, V., di Vimercati, S.D.C., Foresti, S., Samarati, P.: Theory of Privacy and Anonymity. In: Algorithms and Theory of Computation Handbook. CRC Press, Boca Raton (2009)Google Scholar
  6. 6.
    Samarati, P.: Protecting Respondents’ Identities in Microdata Release. IEEE Trans. Knowl. Data Eng. 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  7. 7.
    Sweeney, L.: k-Anonymity: a Model for Protecting Privacy. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 10(5), 557–570 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Brzuska, C., Fischlin, M., Freudenreich, T., Lehmann, A., Page, M., Schelbert, J., Schroeder, D., Volk, F.: Security of Sanitizable Signatures Revisited. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ateniese, G., Chou, D.H., de Medeiros, B., Tsudik, G.: Sanitizable signatures. In: di Vimercati, S.d.C., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 159–177. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Canard, S., Laguillaumie, F., Milhau, M.: Trapdoor Sanitizable Signatures and Their Application to Content Protection. In: Bellovin, S.M., Gennaro, R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 258–276. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Klonowski, M., Lauks, A.: Extended Sanitizable Signatures. In: Rhee, M.S., Lee, B. (eds.) ICISC 2006. LNCS, vol. 4296, pp. 343–355. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Boneh, D., Gentry, C., Lynn, B., Shacham, H.: Aggregate and Verifiably Encrypted Signatures from Bilinear Maps. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 416–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Miyazaki, K., Hanaoka, G., Imai, H.: Digitally Signed Document Sanitizing Scheme Based on Bilinear Maps. In: Proc. of the 2006 ACM Symp. on Information, Computer and Communications Security, ASIACCS 2006, pp. 343–354. ACM, New York (2006)CrossRefGoogle Scholar
  14. 14.
    Izu, T., Kunihiro, N., Ohta, K., Sano, M., Takenaka, M.: Yet Another Sanitizable Signature from Bilinear Maps. In: ARES 2009, pp. 941–946. IEEE Computer Society, Los Alamitos (2009)Google Scholar
  15. 15.
    Haber, S., Hatano, Y., Honda, Y., Horne, W., Miyazaki, K., Sander, T., Tezoku, S., Yao, D.: Efficient Signature Schemes Supporting Redaction, Pseudonymization, and Data Deidentification. In: Proc. of the 2008 ACM Symp. on Information, Computer and Communications Security, ASIACCS 2008, pp. 353–362. ACM, New York (2008)CrossRefGoogle Scholar
  16. 16.
    Chang, E.C., Lim, C., Xu, J.: Short Redactable Signatures Using Random Trees. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 133–147. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Nojima, R., Tamura, J., Kadobayashi, Y., Kikuchi, H.: A Storage Efficient Redactable Signature in the Standard Model. In: Samarati, P., Yung, M., Martinelli, F., Ardagna, C.A. (eds.) ISC 2009. LNCS, vol. 5735, pp. 326–337. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Bauer, D., Blough, D., Mohan, A.: Redactable Signatures on Data with Dependencies and their Application to Personal Health Records. In: Proc. of the 8th ACM Workshop on Privacy in the Electronic Society, WPES ’09, pp. 91–100. ACM Press, New York (2009)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. J. ACM 33(4), 792–807 (1986)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Halevi, S., Micali, S.: Practical and Provably-Secure Commitment Schemes from Collision-Free Hashing. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 201–215. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Goldwasser, S., Micali, S., Rivest, R.: A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks. SIAM J. on Computing 17(2), 281–308 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Bloom, B.: Space/Time Trade-offs in Hash Coding with Allowable Errors. Commun. ACM 13(7), 422–426 (1970)zbMATHCrossRefGoogle Scholar
  23. 23.
    Benaloh, J., de Mare, M.: One-Way Accumulators: A Decentralized Alternative to Digital Sinatures (Extended Abstract). In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 274–285. Springer, Heidelberg (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Daniel Slamanig
    • 1
  • Stefan Rass
    • 2
  1. 1.Carinthia University of Applied SciencesKlagenfurtAustria
  2. 2.System Security GroupKlagenfurt UniversityKlagenfurtAustria

Personalised recommendations