Reliability Analysis of Component-Based Systems with Multiple Failure Modes

  • Antonio Filieri
  • Carlo Ghezzi
  • Vincenzo Grassi
  • Raffaela Mirandola
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6092)


This paper presents a novel approach to the reliability modeling and analysis of a component-based system that allows dealing with multiple failure modes and studying the error propagation among components. The proposed model permits to specify the components attitude to produce, propagate, transform or mask different failure modes. These component-level reliability specifications together with information about systems global structure allow precise estimation of reliability properties by means of analytical closed formulas, probabilistic model-checking or simulation methods. To support the rapid identification of components that could heavily affect systems reliability, we also show how our modeling approach easily support the automated estimation of the system sensitivity to variations in the reliability properties of its components. The results of this analysis allow system designers and developers to identify critical components where it is worth spending additional improvement efforts.


Failure Mode System Reliability Output Port Input Port Software Reliability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Avižienis, A., Laprie, J., Randell, B., Landwehr, C.: Basic concepts and taxonomy of dependable and secure computing. IEEE JDSC 1(1), 11–33 (2004)Google Scholar
  2. 2.
    Cortellessa, V., Grassi, V.: A modeling approach to analyze the impact of error propagation on reliability of component-based systems. In: Schmidt, H.W., Crnković, I., Heineman, G.T., Stafford, J.A. (eds.) CBSE 2007. LNCS, vol. 4608, p. 140. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Hiller, M., Jhumka, A., Suri, N.: Epic: Profiling the propagation and effect of data errors in software. IEEE Transactions Computers 53(5), 512–530 (2004)CrossRefGoogle Scholar
  4. 4.
    Ammar, H., Nassar, D., Abdelmoez, W., Shereshevsky, M., Mili, A.: A framework for experimental error propagation analysis of software architecture specifications. In: Proc. of International Symposium on Software Reliability Engineering. IEEE, Los Alamitos (2002)Google Scholar
  5. 5.
    Hissam, S., Moreno, G., Stafford, J., Wallnau, K.: Enabling predictable assembly. Journal of Systems and Software 65(3), 185–198 (2003)Google Scholar
  6. 6.
    Lau, K., Wang, Z.: Software component models. IEEE Transactions Software Engineering 33(10), 709–724 (2007)CrossRefGoogle Scholar
  7. 7.
    Cheung, R.C.: A user-oriented software reliability model. IEEE Trans. Softw. Eng. 6(2), 118–125 (1980)CrossRefGoogle Scholar
  8. 8.
    Goseva-Popstojanova, K., Trivedi, K.: Architecture based approach to reliability assessment of software systems. Performance Evaluation 45(2-3), 179–204 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Nelson, E.: Estimating software reliability from test data. Microelectronics Reliability 17(1), 67–73 (1978)CrossRefGoogle Scholar
  10. 10.
    Horgan, J., Mathur, A.: Software testing and reliability. The Handbook of Software Reliability Engineering, 531–565 (1996)Google Scholar
  11. 11.
    Meeker, W., Escobar, L.: A review of recent research and current issues in accelerated testing. International Statistical Review/Revue Internationale de Statistique 61(1), 147–168 (1993)CrossRefGoogle Scholar
  12. 12.
    Podgurski, A., Masri, W., McCleese, Y., Wolff, F.G., Yang, C.: Estimation of software reliability by stratified sampling. ACM Transactions Software Engineering Methodology 8(3), 263–283 (1999)CrossRefGoogle Scholar
  13. 13.
    Butler, R.W., Finelli, G.B.: The infeasibility of experimental quantification of life-critical software reliability. In: SIGSOFT 1991: Proceedings of the conference on Software for Citical Systems, pp. 66–76. ACM, New York (1991)CrossRefGoogle Scholar
  14. 14.
    Cinlar, E.: Introduction to stochastic processes, Englewood Cliffs (1975)Google Scholar
  15. 15.
    Katsumi, N.: Fundamentals of linear algebra. McGraw-Hill, New York (1966)Google Scholar
  16. 16.
    Pham, H.: Software reliability and cost models: Perspectives, comparison, and practice. European Journal of Operational Research 149(3), 475–489 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Gokhale, S., Trivedi, K.: Reliability prediction and sensitivity analysis based on software architecture. In: ISSRE, pp. 64–78. IEEE Computer Society, Los Alamitos (2002)Google Scholar
  18. 18.
    Immonen, A., Niemel, E.: Survey of reliability and availability prediction methods from the viewpoint of software architecture. Software and Systems Modeling 7(1), 49–65 (2008)Google Scholar
  19. 19.
    Wang, W., Wu, Y., Chen, M.: An architecture-based software reliability model. In: Pacific Rim International Symposium on Dependable Computing, vol. 0, p. 143. IEEE, Los Alamitos (1999)Google Scholar
  20. 20.
    Reussner, R., Schmidt, H., Poernomo, I.: Reliability prediction for component-based software architectures. Journal of Systems and Software 66(3), 241–252 (2003)CrossRefGoogle Scholar
  21. 21.
    Grassi, V.: Architecture-based dependability prediction for service-oriented computing. In: Proceedings of the WADS Workshop, Citeseer (2004)Google Scholar
  22. 22.
    Abdelmoez, W., Nassar, D., Shereshevsky, M., Gradetsky, N., Gunnalan, R., Ammar, H., Yu, B., Mili, A.: Error propagation in software architectures. In: METRICS 2004, Washington, DC, USA, pp. 384–393. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  23. 23.
    Voas, J.: Error propagation analysis for cots systems. Computing and Control Engineering Journal 8(6), 269–272 (1997)CrossRefGoogle Scholar
  24. 24.
    Voas, J.: Pie: A dynamic failure-based technique. IEEE Trans. Software Eng. 18(8), 717–727 (1992)CrossRefGoogle Scholar
  25. 25.
    Grunske, L., Han, J.: A comparative study into architecture-based safety evaluation methodologies using aadl’s error annex and failure propagation models. In: HASE, pp. 283–292. IEEE Computer Society, Los Alamitos (2008)Google Scholar
  26. 26.
    Cortellessa, V., Singh, H., Cukic, B.: Early reliability assessment of uml based software models. In: Workshop on Software and Performance, pp. 302–309 (2002)Google Scholar
  27. 27.
    Roshandel, R.: Calculating architectural reliability via modeling and analysis. In: ICSE, pp. 69–71. IEEE Computer Society, Los Alamitos (2004)Google Scholar
  28. 28.
    Gokhale, S., Wong, W., Horgan, J., Trivedi, K.: An analytical approach to architecture-based software performance and reliability prediction. Perform. Eval. 58(4) (2004)Google Scholar
  29. 29.
    Blake, J., Reibman, A., Trivedi, K.: Sensitivity analysis of reliability and performability measures for multiprocessor systems. In: SIGMETRICS, pp. 177–186 (1988)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Antonio Filieri
    • 1
  • Carlo Ghezzi
    • 1
  • Vincenzo Grassi
    • 2
  • Raffaela Mirandola
    • 1
  1. 1.Politecnico di MilanoMilanoItaly
  2. 2.Università di Roma “Tor Vergata”RomaItaly

Personalised recommendations