The Design of an Active Seismic Control System for a Building Using the Particle Swarm Optimization

  • Adam Schmidt
  • Roman Lewandowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6114)


Recently significant attention has been paid to the active reduction of vibrations in civil constructions. In this paper we present the synthesis of an active control system using the particle swarm optimization method. The controller design is analyzed as a building stories’ displacement minimalization problem. The proposed fitness function is computationally efficient and incorporates the constraints on the system’s stability and actuators’ maximum output. The performance of the obtained controller was tested using historical earthquake records. The performed numerical simulations proved that the designed controller is capable of efficient vibrations reduction.


active vibration reduction particle swarm optimization earthquake engineering 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yao, J.T.P.: Concept of structural control. ASCE J. Struct. Div. 98, 1567–1575 (1972)Google Scholar
  2. 2.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)Google Scholar
  3. 3.
    Clerc, M., Kennedy, J.: The particle swarm - explosion, stability and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1), 58–73 (2002)CrossRefGoogle Scholar
  4. 4.
    Yamada, K., Kobori, T.: Linear quadratic regulator for structure under on-line predicted future seismic excitation. Earthq. Eng., Struct. Dyn. 25, 631–644 (1996)CrossRefGoogle Scholar
  5. 5.
    Ikeda, Y.: Effect of weighting a stroke of an active mass damper in the linear quadratic regulator problem. Earthq. Eng., Struct. Dyn. 26, 1125–1136 (1997)CrossRefGoogle Scholar
  6. 6.
    Chang, C.C., Yang, H.T.Y.: Instantaneous optimal control of building frames. J. Struct. Eng. 120, 1307–1326 (1994)CrossRefGoogle Scholar
  7. 7.
    Wong, K.K.F., Yang, R.: Predictive instantaneous optimal control of elastic structures during earthquakes. Earthq. Eng., Struct. Dyn. 32, 2161–2177 (2003)CrossRefGoogle Scholar
  8. 8.
    Wu, J.C., Yang, J.N., Schmitendorf, W.E.: Reduced-order H  ∞  and LQR control for wind-excited tall buildings. Eng. Struct. 20, 222–236 (1998)CrossRefGoogle Scholar
  9. 9.
    Pham, K.D., Jin, G., Sain, M.K., Spencer, B.F., Liberty, S.R.: Generalized linear quadratic Gaussian technique for wind benchmark problem. J. Eng. Mech. 130, 466–470 (2004)CrossRefGoogle Scholar
  10. 10.
    Xu, Y.L., Zhang, W.S.: Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllers. Earthq. Eng., Struct. Dyn. 31, 235–259 (2002)CrossRefGoogle Scholar
  11. 11.
    Ankiredi, S., Yang, H.T.T.: Sampled-data H 2 optimal output feedback control for civil structures. Earthq. Eng., Struct. Dyn. 28, 921–940 (1999)CrossRefGoogle Scholar
  12. 12.
    Kose, I.E., Schmitendorf, W.E., Jabbari, F., Yang, J.N.: H  ∞  active seismic response control using static output feedback. J. Eng. Mech. 122, 651–659 (1996)CrossRefGoogle Scholar
  13. 13.
    Jabbari, F., Schmitendorf, W.E., Yang, J.N.: H  ∞  control for seismic-excited buildings with acceleration feedback. J. Eng. Mech. 121, 994–1002 (1995)CrossRefGoogle Scholar
  14. 14.
    Chang, C.C., Yu, L.O.: A simple optimal pole location technique for structural control. Eng. Struct. 20, 792–804 (1998)CrossRefGoogle Scholar
  15. 15.
    Lu, I.Y.: Discrete-time modal control for seismic structures with active bracing system. J. Inteligent Sys. Struct. 12, 369–381 (2001)CrossRefGoogle Scholar
  16. 16.
    Moon, S.J., Bergman, L.A., Voulgaris, P.G.: Sliding mode control of cable-stayed bridge subjected to seismic excitation. J. Eng. Mech. 129, 71–78 (2003)CrossRefGoogle Scholar
  17. 17.
    Ashlawat, A.S., Ramaswamy, A.: Multiobjective optimal fuzzy logic controller driven active and hybrid control systems for seismically excited nonlinear buildings. J. Eng. Mech. 130, 416–423 (2004)CrossRefGoogle Scholar
  18. 18.
    Bani-Hani, K., Ghaboussi, J.: Neural networks for structural control of a benchmark problem, active tendon system. Earthq. Eng.: Struct. Dyn. 27, 1225–1245 (1998)CrossRefGoogle Scholar
  19. 19.
    Przychodzki, M., Lewandowski, R.: Optimal active control of building structures based on acceleration feedback using artificial neural networks. In: Proceedings of the Computer Methods in Mechanics (2007)Google Scholar
  20. 20.
    Qiao, W., Venayagamoorthy, G., Harley, R.: Design of optimal PI controllers for doubly fed induction generators driven by wind turbines using particle swarm optimization. In: Proceedings of 2006 International Joint Conference on Neural Networks, pp. 1982–1987 (2006)Google Scholar
  21. 21.
    Gaing, Z.-L.: A particle swarm optimization approach for optimum design of PID controller in AVR system. IEEE Transaction on Energy Conversion 19(2), 384–391 (2004)CrossRefGoogle Scholar
  22. 22.
    Wang, J., Brackett, B., Harley, R.: Particle Swarm-Assisted State Feedback Control: From Pole Selection to State Estimation. In: 2009 American Control Conference, pp. 1493–1498 (2009)Google Scholar
  23. 23.
    Sun, T.-Y., Huang, C.-S., Tsai, S.-J.: Particle Swarm Optimizer based controller design for Vehicle Navigation System. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 909–914 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Adam Schmidt
    • 1
  • Roman Lewandowski
    • 2
  1. 1.Institute of Control and Information EngineeringPoznan University of Technology 
  2. 2.Institute of Structural EngineeringPoznan University of Technology 

Personalised recommendations