Rbbt: A Framework for Fast Bioinformatics Development with Ruby

  • Miguel Vázquez
  • Rubén Nogales
  • Pedro Carmona
  • Alberto Pascual
  • Juan Pavón
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 74)


In a fast evolving field like molecular biology, which produces great amounts of data at an ever increasing pace, it becomes fundamental the development of analysis applications that can keep up with that pace. The Rbbt development framework intends to support the development of complex functionality with strong data processing dependencies, as reusable components, and serving them through a simple and consistent API. This way, the framework promotes reuse and accessibility, and complements other solutions like classic APIs and function libraries or web services. The Rbbt framework currently provides a wide range of functionality from text mining to microarray meta-analysis.


Conditional Random Field Processing Pipeline Entity Recognition Gene Mention Word Vector 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barrett, T., Suzek, T.O., Troup, D.B., Wilhite, S.E., Ngau, W.C., Ledoux, P., Rudnev, D., Lash, A.E., Fujibuchi, W., Edgar, R.: NCBI GEO: mining millions of expression profiles–database and tools. Nucleic acids research 33(Database Issue), D562 (2005)CrossRefGoogle Scholar
  2. 2.
    Kudo, T.: Crf++: Yet another crf toolkit (2005)Google Scholar
  3. 3.
    Lafferty, J.D., McCallum, A., Pereira, F.C.N.: Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proc. of the Eighteenth International Conference on Machine Learning table of contents, pp. 282–289 (2001)Google Scholar
  4. 4.
    Leaman, R., Gonzalez, G.: Banner: An executable survey of advances in biomedical named entity recognition. In: Pacific Symposium on Biocomputing, vol. 13, pp. 652–663, Citeseer (2008)Google Scholar
  5. 5.
    Morgan, A., Lu, Z., Wang, X., Cohen, A., Fluck, J., Ruch, P., Divoli, A., Fundel, K., Leaman, R., Hakenberg, J., et al.: Overview of BioCreative II gene normalization. Genome Biology 9(Suppl. 2), S3 (2008)CrossRefGoogle Scholar
  6. 6.
    Nogales-Cadenas, R., Carmona-Saez, P., Vazquez, M., Vicente, C., Yang, X., Tirado, F., Carazo, J.M., Pascual-Montano, A.: GeneCodis: interpreting gene lists through enrichment analysis and integration of diverse biological information. Nucleic Acids Research (2009)Google Scholar
  7. 7.
    Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics 21(14), 3191 (2005)CrossRefGoogle Scholar
  8. 8.
    Settles, B., Collier, N., Ruch, P., Nazarenko, A.: Biomedical Named Entity Recognition using Conditional Random Fields and Rich Feature Sets. In: COLING 2004 International Joint workshop on Natural Language Processing in Biomedicine and its Applications (NLPBA/BioNLP) 2004, pp. 107–110 (2004)Google Scholar
  9. 9.
    Smith, L., Tanabe, L., Ando, R., Kuo, C.J., Chung, I.F., Hsu, C.N., Lin, Y.S., Klinger, R., Friedrich, C., Ganchev, K., et al.: Overview of BioCreative II gene mention recognition. Genome Biology 9(Suppl. 2), S2 (2008)CrossRefGoogle Scholar
  10. 10.
    Vazquez, M., Carmona-Saez, P., Nogales-Cadenas, R., Chagoyen, M., Tirado, F., Carazo, J.M., Pascual-Montano, A.: SENT: semantic features in text. Nucleic Acids Research 37(Web Server issue), W153 (2009)CrossRefGoogle Scholar
  11. 11.
    Vazquez, M., Nogales-Cadenas, R., Arroyo, J., Botas, P., Garca, R., Carazo, J.M., Tirado, F., Pascual-Montano, A., Carmona-Saez, P.: MARQ: an online tool to mine GEO for experiments with similar or opposite gene expression signatures (Under submission),

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Miguel Vázquez
    • 1
  • Rubén Nogales
    • 2
  • Pedro Carmona
    • 2
  • Alberto Pascual
    • 3
  • Juan Pavón
    • 1
  1. 1.Dep. Ingeniería del Software e Inteligencia ArtificialUniversidad Complutense Madrid 
  2. 2.Dep. Arquitectura de Computadores y AutomáticaUniversidad Complutense Madrid 
  3. 3.Biocomputing UnitNational Center for Biotechnology-CSIC 

Personalised recommendations