Applying a Metabolic Footprinting Approach to Characterize the Impact of the Recombinant Protein Production in Escherichia coli

  • Sónia Carneiro
  • Silas G. Villas-Bôas
  • Isabel Rocha
  • Eugénio C. Ferreira
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 74)

Abstract

In this study metabolic footprinting was applied to evaluate the metabolic consequences of protein overproduction at slow growth conditions (μ= 0.1 h− 1). The extracellular metabolites detected by gas chromatography-mass spectrometry characterized the metabolic footprints before and after the induction of the recombinant protein production (i.e. pre- and post-induction phases). Metabolic footprinting enabled the discrimination between the two growth phases and exposed significant alterations in the extracellular milieu during the recombinant process.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akesson, M., Hagander, P., Axelsson, J.P.: Avoiding acetate accumulation in Escherichia coli cultures using feedback control of glucose feeding. Biotechnol. Bioeng. 73, 223–230 (2001)CrossRefGoogle Scholar
  2. 2.
    Bentley, W.E., Mirjalili, N., Andersen, D.C., et al.: Plasmid-encoded protein - the principal factor in the metabolic burden associated with recombinant bacteria. Biotechnol. Bioeng. 35, 668–681 (1990)CrossRefGoogle Scholar
  3. 3.
    Bonomo, J., Gill, R.T.: Amino acid content of recombinant proteins influences the metabolic burden response. Biotechnol. Bioeng. 90, 116–126 (2005)CrossRefGoogle Scholar
  4. 4.
    Bulter, T., Bernstein, J.R., Liao, J.C.: A perspective of metabolic engineering strategies: Moving up the systems hierarchy. Biotechnol. Bioeng. 84, 815–821 (2003)CrossRefGoogle Scholar
  5. 5.
    Chou, C.P.: Engineering cell physiology to enhance recombinant protein production in Escherichia coli. Appl. Microbiol. Biotechnol. 76, 521–532 (2007)CrossRefGoogle Scholar
  6. 6.
    Dittrich, C.R., Bennett, G.N., San, K.Y.: Characterization of the acetate-producing pathways in Escherichia coli. Biotechnol. Progr. 21, 1062–1067 (2005)CrossRefGoogle Scholar
  7. 7.
    Eiteman, M.A., Altman, E.: Overcoming acetate in Escherichia coli recombinant protein fermentations. Trends Biotechnol. 24, 530–536 (2006)CrossRefGoogle Scholar
  8. 8.
    Ganusov, V.V., Brilkov, A.V.: Estimating the instability parameters of plasmid-bearing cells. I. Chemostat culture. J Theor. Biol. 219, 193–205 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Glick, B.R.: Metabolic load and heterologous gene-expression. Biotechnol. Adv. 13, 247–261 (1995)CrossRefGoogle Scholar
  10. 10.
    Jana, S., Deb, J.K.: Strategies for efficient production of heterologous proteins in Escherichia coli. Appl. Microbiol. Biotechnol. 67, 289–298 (2005)CrossRefGoogle Scholar
  11. 11.
    Levisauskas, D., Galvanauskas, V., Henrich, S., et al.: Model-based optimization of viral capsid protein production in fed-batch culture of recombinant Escherichia coli. Bioprocess Biosyst. Eng. 25, 255–262 (2003)Google Scholar
  12. 12.
    Mahadevan, R., Doyle, F.J.: On-line optimization of recombinant product in a fed-batch bioreactor. Biotechnol. Progr. 19, 639–646 (2003)CrossRefGoogle Scholar
  13. 13.
    Mapelli, V., Olsson, L., Nielsen, J.: Metabolic footprinting in microbiology: methods and applications in functional genomics and biotechnology. Trends Biotechnol. 26, 490–497 (2008)CrossRefGoogle Scholar
  14. 14.
    Menzella, H.G., Ceccarelli, E.A., Gramajo, H.C.: Novel Escherichia coli strain allows efficient recombinant protein production using lactose as inducer. Biotechnol. Bioeng. 82, 809–817 (2003)CrossRefGoogle Scholar
  15. 15.
    Ozkan, P., Sariyar, B., Utkur, F.O., et al.: Metabolic flux analysis of recombinant protein overproduction in Escherichia coli. Biochem. Eng. J. 22, 167–195 (2005)CrossRefGoogle Scholar
  16. 16.
    Rocha, I., Ferreira, E.C.: On-line simultaneous monitoring of glucose and acetate with FIA during high cell density fermentation of recombinant E. coli. Anal. Chim. Acta. 462, 293–304 (2002)CrossRefGoogle Scholar
  17. 17.
    Rocha, I., Veloso, A.C.A., Carneiro, S., et al.: Implementation of a specific rate controller in a fed-batch E. coli fermentation. In: Proceedings of the 17th World Congress The International Federation of Automatic Control (2008)Google Scholar
  18. 18.
    Rozkov, A., vignone-Rossa, C.A., Ertl, P.F., et al.: Characterization of the metabolic burden on Escherichia coli DH1 cells imposed by the presence of a plasmid containing a gene therapy sequence. Biotechnol. Bioeng. 88, 909–915 (2004)CrossRefGoogle Scholar
  19. 19.
    Saeed, A.I., Sharov, V., White, J., et al.: TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003)Google Scholar
  20. 20.
    Saucedo, V.M., Karim, M.N.: Analysis and comparison of input-output models in a recombinant fed-batch fermentation. J. Ferment. Bioeng. 83, 70–78 (1997)CrossRefGoogle Scholar
  21. 21.
    Shiloach, J., Kaufman, J., Guillard, A.S., et al.: Effect of glucose supply strategy on acetate accumulation, growth, and recombinant protein production by Escherichia coli BL21 ((λDE3) and Escherichia coli JM109. Biotechnol. Bioeng. 49, 421–428 (1996)CrossRefGoogle Scholar
  22. 22.
    Shimizu, N., Fukuzono, S., Fujimori, K., et al.: Fed-batch cultures of recombinant Escherichia coli with inhibitory substance concentration monitoring. J. Ferment. Technol. 66, 187–191 (1988)CrossRefGoogle Scholar
  23. 23.
    Stein, S.E.: An integrated method for spectrum extraction and compound identification from gas chromatography/mass spectrometry data. J. Am. Soc. Mass Spectrom. 10, 770–781 (1999)CrossRefGoogle Scholar
  24. 24.
    Suarez, D.C., Kilikian, B.V.: Acetic acid accumulation in aerobic growth of recombinant Escherichia coli. Process Biochem. 35, 1051–1055 (2000)CrossRefGoogle Scholar
  25. 25.
    Villas-Boas, S.G., Delicado, D.G., Akesson, M., et al.: Simultaneous analysis of amino and nonamino organic acids as methyl chloroformate derivatives using gas chromatography-mass spectrometry. Anal. Biochem. 322, 134–138 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Sónia Carneiro
    • 1
  • Silas G. Villas-Bôas
    • 2
  • Isabel Rocha
    • 1
  • Eugénio C. Ferreira
    • 1
  1. 1.IBB - Institute for Biotechnology and Bioengineering, Centre of Biological EngineeringUniversity of MinhoBragaPortugal
  2. 2.School of Biological SciencesThe University of AucklandAucklandNew Zealand

Personalised recommendations