Scalable Phylogenetics through Input Preprocessing

  • Roberto Blanco
  • Elvira Mayordomo
  • Esther Montes
  • Rafael Mayo
  • Angelines Alberto
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 74)


Phylogenetic reconstruction is one of the fundamental problems in computational biology. The combinatorial explosion of the state space and the complexity of mathematical models impose practical limits on workable problem sizes. In this article we explore the scalability of popular algorithms under real datasets as problem dimensions grow. We furthermore develop an efficient preclassification and partitioning strategy based on guide trees, which are used to intently define an evolutionary hierarchy of groups of related data, and to determine membership of individual data to their corresponding subproblems. Finally, we apply this method to efficiently calculate exhaustive phylogenies of human mitochondrial DNA according to phylogeographic criteria.


Steiner Tree Guide Tree Problem Dimension Supertree Method Bayesian Phylogenetic Inference 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altekar, G., Dwarkadas, S., Huelsenbeck, J.P., Ronquist, F.: Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20, 407–415 (2004)CrossRefGoogle Scholar
  2. 2.
    Blanco, R., Mayordomo, E.: ZARAMIT: a system for the evolutionary study of human mitochondrial DNA. In: Omatu, S., Rocha, M.P., Bravo, J., Fernández, F., Corchado, E., Bustillo, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5518, pp. 1139–1142. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Böckenhauer, H.J., Hromkovič, J., Královič, R., Mömkea, T., Rossmanith, P.: Reoptimization of Steiner trees: changing the terminal set. Theor. Comput. Sci. 410, 3428–3435 (2009)zbMATHCrossRefGoogle Scholar
  4. 4.
    Ciccarelli, F.D., Doerks, T., von Mering, C., Creevey, C.J., Snel, B., Bork, P.: Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006)CrossRefGoogle Scholar
  5. 5.
    Felsenstein, J.: PHYLIP – Phylogeny Inference Package (version 3.2). Cladistics 5, 164–166 (1989)Google Scholar
  6. 6.
    Holder, M., Lewis, P.O.: Phylogeny estimation: traditional and Bayesian approaches. Nat. Rev. Genet. 4, 275–284 (2003)CrossRefGoogle Scholar
  7. 7.
    Richards, M.B., Macaulay, V.A., Bandelt, H.J., Sykes, B.C.: Phylogeography of mitochondrial DNA in western Europe. Ann. Hum. Genet. 62, 241–260 (1998)CrossRefGoogle Scholar
  8. 8.
    Ronquist, F., Huelsenbeck, J.P.: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003)CrossRefGoogle Scholar
  9. 9.
    Ruiz-Pesini, E., Lott, M.T., Procaccio, V., Poole, J.C., Brandon, M.C., Mishmar, D., Yi, C., Kreuziger, J., Baldi, P., Wallace, D.C.: An enhanced MITOMAP with a global mtDNA mutational phylogeny. Nucleic Acids Res. 35, D823–D828 (2007)CrossRefGoogle Scholar
  10. 10.
    Sanderson, M.J., Purvis, A., Henze, C.: Phylogenetic supertrees: assembling the trees of life. Trends Ecol. Evol. 13, 105–109 (1998)CrossRefGoogle Scholar
  11. 11.
    Steel, M., Dress, A.W.M., Böcker, S.: Simple but fundamental limitations on supertree and consensus tree methods. Syst. Biol. 49, 363–368 (2000)CrossRefGoogle Scholar
  12. 12.
    Torroni, A., Achilli, A., Macaulay, V., Richards, M., Bandelt, H.J.: Harvesting the fruit of the human mtDNA tree. Trends Genet. 22, 339–345 (2006)CrossRefGoogle Scholar
  13. 13.
    Wallace, D.C.: A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–407 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roberto Blanco
    • 1
  • Elvira Mayordomo
    • 1
  • Esther Montes
    • 2
  • Rafael Mayo
    • 2
  • Angelines Alberto
    • 2
  1. 1.Departamento de Informática e Ingeniería de Sistemas (DIIS)/Instituto de Investigación en Ingeniería de Aragón (I3A)Universidad de ZaragozaZaragozaSpain
  2. 2.Centro de Investigaciones EnergéticasMedioambientales y Tecnológicas (CIEMAT)MadridSpain

Personalised recommendations