An Interpretation of Intuitionistic Fuzzy Sets in the Framework of the Dempster-Shafer Theory

  • Ludmila Dymova
  • Pavel Sevastjanov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6113)


A new interpretation of Intuitionistic Fuzzy Sets in the framework of the Dempster-Shafer Theory is proposed. Such interpretation allows us to reduce all mathematical operations on the Intuitionistic Fuzzy values to the operations on belief intervals. The proposed approach is used for the solution of Multiple Criteria Decision Making (MCDM) problem in the Intuitionistic Fuzzy setting.


Local Criterion Belief Function Multiple Criterion Decision Make Focal Element Multiattribute Decision 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Atanassov, K.T.: Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20, 87–96 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Atanassov, K.T.: New operations defined over the intuitionistic fuzzy sets. Fuzzy Sets and Systems 61, 137–142 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Beynon, M., Curry, B., Morgan, P.: The Dempster-Shafer theory of evidence: an alternative approach to multicriteria decision modeling. Omega 28, 37–50 (2000)CrossRefGoogle Scholar
  4. 4.
    Chen, S.M., Tan, J.M.: Handling multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 67, 163–172 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dempster, A.P.: Upper and lower probabilities induced by a muilti-valued mapping. Ann. Math. Stat. 38, 325–339 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Dempster, A.P.: A generalization of Bayesian inference (with discussion). J. Roy. Stat. Soc., Series B 30, 208–247 (1968)MathSciNetGoogle Scholar
  7. 7.
    Denoeux, T.: Conjunctive and disjunctive combination of belief functions induced by nondistinct bodies of evidence. Artificial Intelligence 172, 234–264 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Deschrijver, G., Kerre, E.E.: On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Information Sciences 177, 1860–1866 (2007)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dubois, D., Prade, H.: Representation and combination of uncertainty with belief functions and possibility measures. Computational Intelligence 4, 244–264 (1998)CrossRefGoogle Scholar
  10. 10.
    Hong, D.H., Choi, C.-H.: Multicriteria fuzzy decision-making problems based on vague set theory. Fuzzy Sets and Systems 114, 103–113 (2000)zbMATHCrossRefGoogle Scholar
  11. 11.
    Hua, Z., Gong, B., Xu, X.: A DS-AHP approach for multi-attribute decision making problem with incomplete information. Expert Systems with Applications 34, 2221–2227 (2008)CrossRefGoogle Scholar
  12. 12.
    Li, D.-F.: Multiattribute decision making models and methods using intuitionistic fuzzy sets. Journal of Computer and System Sciences 70, 73–85 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Murphy, C.K.: Combining belief functions when evidence coflicts. Decision Support Systems 29, 1–9 (2000)CrossRefGoogle Scholar
  14. 14.
    Sevastjanov, P.: Numerical methods for interval and fuzzy number comparison based on the probabilistic approach and Dempster-Shafer theory. Information Sciences 177 (2007)Google Scholar
  15. 15.
    Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)zbMATHGoogle Scholar
  16. 16.
    Smets, P.: The combination of evidence in the transferable belief model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 447–458 (1990)CrossRefGoogle Scholar
  17. 17.
    Xu, Z.: Intuitionistic fuzzy aggregation operators. IEEE Transactions on Fuzzy Systems 15, 1179–1187 (2007)CrossRefGoogle Scholar
  18. 18.
    Xu, Z., Yager, R.R.: Dynamic intuitionistic fuzzy multi-attribute decision making. International Journal of Approximate Reasoning 48, 246–262 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Yager, R.R.: On the Dempster-Shafer framework and new combitanion rules. Information Sciences 41, 93–138 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Zadeh, L.: A simple view of the Dempster-Shafer theory of evidence and its application for the rule of combination. AI Magazine 7, 85–90 (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ludmila Dymova
    • 1
  • Pavel Sevastjanov
    • 1
  1. 1.Institute of Comp.& Information Sci.Czestochowa University of TechnologyCzestochowaPoland

Personalised recommendations