Advertisement

Fully Dynamic Speed-Up Techniques for Multi-criteria Shortest Path Searches in Time-Dependent Networks

  • Annabell Berger
  • Martin Grimmer
  • Matthias Müller-Hannemann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)

Abstract

We introduce two new speed-up techniques for time-dependent point-to-point shortest path problems with fully-dynamic updates in a multi-criteria setting. Our first technique, called SUBITO, is based on a specific substructure property of time-dependent paths which can be lower bounded by their minimal possible travel time. It requires no preprocessing, and the bounds can be computed on-the-fly for each query. We also introduce k-flags, an extension of arc flags, which assigns to each arc one of k levels for each region of a vertex partition. Intuitively, the higher the level of an arc for a certain destination, the larger the detour with respect to travel time. k-flags allow us to handle dynamic changes without additional time-consuming preprocessing.

In an extensive computational study using the train network of Germany we analyze these and other speed-up techniques with respect to their robustness under high and realistic update rates. We show that speed-up factors are conserved under different scenarios, namely a typical day of operation, distributed delays after “heavy snowfall”, and a major disruption at a single station. In our experiments, k-flags combined with SUBITO have led to the largest speed-up factors, but only marginally better than SUBITO alone. These observations can be explained by studying the distribution of k-flags. It turns out that only a small fraction of arcs can be excluded if one wants to guarantee exact Pareto-optimal point-to-point queries.

Keywords

Shortest paths dynamic graphs speed-up technique 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Müller-Hannemann, M., Schnee, M.: Efficient timetable information in the presence of delays. In: Zaroliagis, C. (ed.) Robust and Online Large-Scale Optimization. LNCS, vol. 5868, pp. 249–272. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering route planning algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway dimension, shortest paths, and provably efficient algorithms. In: SODA 2010: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 782–793. SIAM, Philadelphia (2010)Google Scholar
  4. 4.
    Berger, A., Delling, D., Gebhardt, A., Müller-Hannemann, M.: Accelerating time-dependent multi-criteria timetable information is harder than expected. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2009)Google Scholar
  5. 5.
    Bauer, R., Delling, D., Wagner, D.: Experimental study on speed-up techniques for timetable information systems. Networks (to appear, 2010)Google Scholar
  6. 6.
    Bast, H.: Car or public transport—two worlds. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th Birthday. LNCS, vol. 5760, pp. 355–367. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Berger, A., Müller-Hannemann, M.: Subpath-optimality of multi-criteria shortest paths in time-dependent and event-dependent networks. Technical report, Martin-Luther-Universität Halle-Wittenberg, Department of Computer Science (2009)Google Scholar
  8. 8.
    Wagner, D., Willhalm, T., Zaroliagis, C.D.: Dynamic shortest paths containers. Electr. Notes Theor. Comput. Sci. 92, 65–84 (2004)CrossRefGoogle Scholar
  9. 9.
    Schultes, D., Sanders, P.: Dynamic highway-node routing. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 66–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Delling, D., Wagner, D.: Landmark-based routing in dynamic graphs. In: Demetrescu, C. (ed.) WEA 2007. LNCS, vol. 4525, pp. 52–65. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Berrettini, E., D’Angelo, G., Delling, D.: Arc-flags in dynamic graphs. In: Clausen, J., Stefano, G.D. (eds.) ATMOS 2009 - 9th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Germany (2009)Google Scholar
  12. 12.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: Faster and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Nannicini, G., Baptiste, P., Krob, D., Liberti, L.: Fast computation of point-to-point paths on time-dependent road networks. In: Yang, B., Du, D.-Z., Wang, C.A. (eds.) COCOA 2008. LNCS, vol. 5165, pp. 225–234. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  14. 14.
    Nannicini, G., Baptiste, P., Barbier, G., Krob, D., Liberti, L.: Fast paths in large-scale dynamic road networks. Computational Optimization and Applications (published online, 2008)Google Scholar
  15. 15.
    Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37, 607–625 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Annabell Berger
    • 1
  • Martin Grimmer
    • 1
  • Matthias Müller-Hannemann
    • 1
  1. 1.Department of Computer ScienceMartin-Luther-University Halle-WittenbergHalleGermany

Personalised recommendations