Alternative Routes in Road Networks

  • Ittai Abraham
  • Daniel Delling
  • Andrew V. Goldberg
  • Renato F. Werneck
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)

Abstract

We study the problem of finding good alternative routes in road networks. We look for routes that are substantially different from the shortest path, have small stretch, and are locally optimal. We formally define the problem of finding alternative routes with a single via vertex, develop efficient algorithms for it, and evaluate them experimentally. Our algorithms are efficient enough for practical use and compare favorably with previous methods in both speed and solution quality.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, I., Fiat, A., Goldberg, A.V., Werneck, R.F.: Highway Dimension, Shortest Paths, and Provably Efficient Algorithms. In: SODA, pp. 782–793 (2010)Google Scholar
  2. 2.
    Cambridge Vehicle Information Technology Ltd. Choice Routing (2005), http://www.camvit.com
  3. 3.
    Dantzig, G.B.: Linear Programming and Extensions. Princeton Univ. Press, Princeton (1962)Google Scholar
  4. 4.
    Delling, D., Sanders, P., Schultes, D., Wagner, D.: Engineering Route Planning Algorithms. In: Lerner, J., Wagner, D., Zweig, K.A. (eds.) Algorithmics of Large and Complex Networks. LNCS, vol. 5515, pp. 117–139. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Delling, D., Wagner, D.: Pareto Paths with SHARC. In: Vahrenhold, J. (ed.) SEA 2009. LNCS, vol. 5526, pp. 125–136. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.): 9th DIMACS Implementation Challenge - Shortest Paths (2006) http://www.dis.uniroma1.it/~challenge9/
  7. 7.
    Dijkstra, E.W.: A Note on Two Problems in Connexion with Graphs. Numerische Mathematik 1, 269–271 (1959)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eppstein, D.: Finding the k shortest paths. In: Proceedings of the 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1994), pp. 154–165 (1994)Google Scholar
  9. 9.
    Geisberger, R., Kobitzsch, M., Sanders, P.: Route Planning with Flexible Objective Functions. In: ALENEX, pp. 124–137. SIAM, Philadelphia (2010)Google Scholar
  10. 10.
    Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction Hierarchies: Faster and Simpler Hierarchical Routing in Road Networks. In: McGeoch, C.C. (ed.) WEA 2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Goldberg, A.V., Kaplan, H., Werneck, R.F.: Reach for A*: Shortest Path Algorithms with Preprocessing. In: Demetrescu, C., Goldberg, A.V., Johnson, D.S. (eds.) The Shortest Path Problem: Ninth DIMACS Implementation Challenge. DIMACS Book, vol. 74, pp. 93–139. American Mathematical Society, Providence (2009)Google Scholar
  12. 12.
    Gutman, R.J.: Reach-Based Routing: A New Approach to Shortest Path Algorithms Optimized for Road Networks. In: ALENEX, pp. 100–111. SIAM, Philadelphia (2004)Google Scholar
  13. 13.
    Hansen, P.: Bricriteria Path Problems. In: Fandel, G., Gal, T. (eds.) Multiple Criteria Decision Making: Theory and Application, pp. 109–127. Springer, Heidelberg (1979)Google Scholar
  14. 14.
    Martins, E.Q.: On a Multicriteria Shortest Path Problem. European Journal of Operational Research 26(3), 236–245 (1984)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ittai Abraham
    • 1
  • Daniel Delling
    • 1
  • Andrew V. Goldberg
    • 1
  • Renato F. Werneck
    • 1
  1. 1.Microsoft Research Silicon Valley 

Personalised recommendations