Computational Challenges with Cliques, Quasi-cliques and Clique Partitions in Graphs

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)


During the last decade, many problems in social, biological, and financial networks require finding cliques, or quasi-cliques. Cliques or clique partitions have also been used as clustering or classification tools in data sets represented by networks. These networks can be very large and often massive and therefore external (or semi-external) memory algorithms are needed. We discuss four applications where we identify computational challenges which are both of practical and theoretical interest.


Maximum Clique Computational Challenge Call Graph Clique Number Maximum Clique Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Diestel, R.: Graph Theory. Electronic Edition 2000. Springer, New York (2000)CrossRefGoogle Scholar
  2. 2.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice-Hall, Englewood Cliffs (2000)Google Scholar
  3. 3.
    Karp, R.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J. (eds.) Proceedings of a Symposium on the Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)Google Scholar
  4. 4.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A guide to the Theory of NP-Completeness. In: Klee, V. (ed.) A series of books in the mathematical sciences. W. H. Freeman and Company, New York (1979)Google Scholar
  5. 5.
    Arora, S., Safra, S.: Probabilistic Checking of Proofs; a new Characterization of NP. In: Proceedings 33rd IEEE Symposium on Foundations of Computer Science, pp. 2–13. IEEE Computer Society, Los Angeles (1992)CrossRefGoogle Scholar
  6. 6.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problmes. JACM 41, 960–981 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Bomze, I., Budinich, M., Pardalos, P., Pelillo, M.: The maximum clique problem. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, pp. 1–74. Kluwer Academic Publishers, Dordrecht (1999)Google Scholar
  8. 8.
    Rebennack, S.: Stable Set Problem: Branch & Cut Algorithms. In: Floudas, C.A., Pardalos, P.M. (eds.) Encyclopedia of Optimization, 2nd edn., pp. 3676–3688. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Rebennack, S., Oswald, M., Theis, D., Seitz, H., Reinelt, G., Pardalos, P.: A Branch and Cut solver for the maximum stable set problem. Journal of Combinatorial Optimization, doi:10.1007/s10878-009-9264-3Google Scholar
  10. 10.
    Pardalos, P., Mavridou, T., Xue, J.: The graph coloring problem: a bibliographic survey. In: Du, D.Z., Pardalos, P. (eds.) Handbook of Combinatorial Optimization, vol. 2, pp. 331–395. Kluwer Academic Publishers, Dordrecht (1990)Google Scholar
  11. 11.
    Brunato, M., Hoos, H., Battiti, R.: On Effectively Finding Maximal Quasi-cliques in Graphs. In: Maniezzo, V., Battiti, R., Watson, J.-P. (eds.) LION 2007 II. LNCS, vol. 5313, pp. 41–55. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Hayes, B.: Graph Theory in Practice: Part I. American Scientist 88(1), 9 (2000)Google Scholar
  13. 13.
    Cipra, B.: Massive graphs pose big problems. Technical report, SIAM NEWS, April 22 (1999)Google Scholar
  14. 14.
    Abello, J., Resende, M., Sudarsky, S.: Massive Quasi-Clique Detection. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, p. 598. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Ye, Q., Wu, B., Suo, L., Zhu, T., Han, C., Wang, B.: TeleComVis: Exploring Temporal Communities in Telecom Networks. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML PKDD 2009. LNCS, vol. 5782, pp. 755–758. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  16. 16.
    Abello, J., Pardalos, P., Resende, M.: On Maximum Clique Problems in Very Lagre Graphs. In: External Memory Algorithms. DIMACS Series, pp. 119–130. American Mathematical Society, Providence (1999)Google Scholar
  17. 17.
    Nanavati, A., Singh, R., Chakraborty, D., Dasgupta, K., Mukherjea, S., Das, G., Gurumurthy, S., Joshi, A.: Analyzing the Structure and Evolution of Massive Telecom Graphs. IEEE Transactions on Knowledge and Data Engineering 20(5), 703–718 (2008)CrossRefGoogle Scholar
  18. 18.
    Narasimhamurthy, A., Greene, D., Hurley, N., Cunningham, P.: Community Finding in Large Social Networks Through Problem Decomposition. Technical report, UCD School of Computer Science and Informatics (2008)Google Scholar
  19. 19.
    Faloutsos, M., Faloutsos, P., Faloutsos, C.: On Power-law Relationships of the Internet Topology. In: Proceedings of the ACM SIGCOMM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, pp. 251–262 (1999)Google Scholar
  20. 20.
    Hayes, B.: Connecting the Dots: Can the tools of graph theory and social-network studies unravel the next big plot? American Scientist 94(5), 400 (2006)Google Scholar
  21. 21.
    Schintler, L., Gorman, S., Reggiani, A., Patuelli, R., Nijkamp, P.: Small-World Phenomena in Communications Networks: A Cross-Atlantic Comparison. Advances in Spatial Science. In: Methods and Models in Transport and Telecommunications, pp. 201–220. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Butenko, S., Chaovalitwongse, W., Pardalos, P. (eds.): Clustering Challenges in Biological Networks. World Scientific, Singapore (2009)Google Scholar
  23. 23.
    Butenko, S., Pardalos, P., Sergieko, I., Shylo, V., Stetsyuk, P.: Estimating the size of correcting codes using extremal graph problems. In: Optimization: Structure and Applications. Springer Optimization and Its Applications, vol. 32, pp. 227–243. Springer, Heidelberg (2009)Google Scholar
  24. 24.
    van Pul, C., Etzion, T.: New lower bounds for constatn weight codes. IEEE Trans. Inform. Theory 35, 1324–1329 (1989)zbMATHCrossRefGoogle Scholar
  25. 25.
    Gendreau, M., Laporte, G., Semet, F.: Solving an ambulance location model by tabu search. Location Science 5, 75–88 (1997)zbMATHCrossRefGoogle Scholar
  26. 26.
    Brotcorne, L., Laporte, G., Semet, F.: Fast heuristics for large scale covering ocation problems. Computers and Operations Research 29, 651–665 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Mitchell, E., Artymiuk, P., Rice, D., Willett, P.: Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212, 151 (1990)CrossRefGoogle Scholar
  28. 28.
    Brint, A., Willett, P.: Algorithms for the Identification of Three-Dimensional Maximal Common Substructures. J. Chem. ZnJ Comput. Sci. 27, 152–158 (1987)Google Scholar
  29. 29.
    Gardiner, E., Artymiuk, P., Willett, P.: Clique-detection algorithms for matching three-dimensional molecular structures. Journal of Molecular Graphics and Modelling 15, 245–253 (1997)CrossRefGoogle Scholar
  30. 30.
    Raymond, J., Willett, P.: Maximum common subgraph isomorphism algorithms for the matching of chemical structures. Journal of Computer-Aided Molecular Design 16, 521–533 (2002)CrossRefGoogle Scholar
  31. 31.
    Gardiner, E., Willett, P., Artymiuk, P.: Graph-theoretic techniques for macromolecular docking. J. Chem. Inf. Comput. 40, 273–279 (2000)Google Scholar
  32. 32.
    Butenko, S., Wilhelm, W.: Clique-detection models in computational biochemistry and genomics. Euorpean Journal of Operational Research 173, 1–17 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Keller, O.: Über die lückenlose Einfüllung des Raumes mit Würfeln. J. Reine Angew. Math. 163, 231–248 (1930)zbMATHGoogle Scholar
  34. 34.
    Minkowski, H.: Diophantische Approximationen. Teubner, LeipzigGoogle Scholar
  35. 35.
    Stein, S., Szabó, S.: Algebra and Tiling: Homomorphisms in the Service of Geometry. The Carus Mathematical Monographs, vol. 25. The Mathematical Associtaion of America (1994)Google Scholar
  36. 36.
    Hajós, G.: Sur la factorisation des abeliens. Casopis 50, 189–196Google Scholar
  37. 37.
    Perron, O.: Über lückenlose Ausfüllung des n-dimensioanlen Raumes durch kongruente Würfel. Math. Z. 46, 161–180 (1940)zbMATHCrossRefMathSciNetGoogle Scholar
  38. 38.
    Lagarias, J., Shor, P.: Keller’s Cube-Tiling Conjecture is False in High Dimensions. Bulletin AMS 27, 279–283 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Mackey, J.: A Cube Tiling of Dimension Eight with No Facesharing. Discrete Comput. Geom. 28, 275–279 (2002)zbMATHMathSciNetGoogle Scholar
  40. 40.
    Corrádi, K., Szabó, S.: A Combinatorial Approach for Keller’s Conjecture. Periodica Math. Hung. 21(2), 95–100 (1990)zbMATHCrossRefGoogle Scholar
  41. 41.
    Hasselberg, J., Pardalos, P., Vairaktarakis, G.: Test Case Generators and Computational Results for the Maximum Clique Problem. Journal of Global Optimization 3, 463–482 (1993)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Center for Applied Optimization, Department of Industrial & Systems EngineeringUniversity of FloridaUSA

Personalised recommendations