An Analysis of Heuristics for Vertex Colouring

  • Marco Chiarandini
  • Thomas Stützle
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)

Abstract

Several heuristics have been presented in the literature for finding a proper colouring of the vertices of a graph using the least number of colours. These heuristics are commonly compared on a set of graphs that served two DIMACS competitions. This set does not permit the statistical study of relations between algorithm performance and structural features of graphs. We generate a new set of random graphs controlling their structural features and advance the knowledge of heuristics for graph colouring. We maintain and make all algorithms described here publically available in order to facilitate future comparisons.

Keywords

graph coloring heuristics experimental analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bondy, J., Murty, U.: Graph Theory. Graduate Texts in Mathematics, vol. 244. Springer, Heidelberg (2008)MATHGoogle Scholar
  2. 2.
    Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22(4), 251–256 (1979)MATHCrossRefGoogle Scholar
  3. 3.
    Chiarandini, M., Dumitrescu, I., Stützle, T.: Stochastic local search algorithms for the graph colouring problem. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, pp. 63-1–63-17. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  4. 4.
    Chiarandini, M.: Bibliography on graph-vertex coloring (2010), http://www.imada.sdu.dk/~marco/gcp
  5. 5.
    Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing berge graphs. Combinatorica 25(2), 143–186 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Conover, W.: Practical Nonparametric Statistics, 3rd edn. John Wiley & Sons, New York (1999)Google Scholar
  7. 7.
    Culberson, J., Beacham, A., Papp, D.: Hiding our colors. In: Proceedings of the CP 1995 Workshop on Studying and Solving Really Hard Problems, Cassis, France, September 1995, pp. 31–42 (1995)Google Scholar
  8. 8.
    Galinier, P., Hao, J.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3(4), 379–397 (1999)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Galinier, P., Hertz, A.: A survey of local search methods for graph coloring. Computers & Operations Research 33, 2547–2562 (2006)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Grötschel, M., Lovász, L., Schrijver, A.: The ellipsoid method and its consequences in combinatorial optimization. Combinatorica 1(2), 169–197 (1981)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Johnson, D.S., Aragon, C.R., McGeoch, L.A., Schevon, C.: Optimization by simulated annealing: An experimental evaluation; part II, graph coloring and number partitioning. Operations Research 39(3), 378–406 (1991)MATHCrossRefGoogle Scholar
  12. 12.
    Johnson, D.S., Mehrotra, A., Trick, M.A.: Special issue on computational methods for graph coloring and its generalizations. Discrete Applied Mathematics 156(2), 145–146 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Johnson, D.S., Trick, M. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993. DIMACS Series in DMTCS, vol. 26. American Mathematical Society, Providence (1996)Google Scholar
  14. 14.
    Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards 84(6), 489–506 (1979)MATHMathSciNetGoogle Scholar
  15. 15.
    Malaguti, E., Toth, P.: A survey on vertex coloring problems. International Transactions in Operational Research, 1–34 (2009)Google Scholar
  16. 16.
    Mehrotra, A., Trick, M.: A column generation approach for graph coloring. INFORMS Journal on Computing 8(4), 344–354 (1996)MATHCrossRefGoogle Scholar
  17. 17.
    Peemöller, J.: A correction to Brelaz’s modification of Brown’s coloring algorithm. Communications of the ACM 26(8), 595–597 (1983)CrossRefGoogle Scholar
  18. 18.
    Trick, M.: Network resources for coloring a graph (1994), http://mat.gsia.cmu.edu/COLOR/color.html (last visited: February 2005)
  19. 19.
    Trick, M.: ROIS: Registry for optimization instances and solutions (2009), http://mat.tepper.cmu.edu/ROIS/ (last visited: December 2009)
  20. 20.
    de Werra, D.: Heuristics for graph coloring. Computing Supplement 7, 191–208 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marco Chiarandini
    • 1
  • Thomas Stützle
    • 2
  1. 1.University of Southern DenmarkOdenseDenmark
  2. 2.IRIDIAUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations