A Branch-and-Price Algorithm for Multi-mode Resource Leveling

  • Eamonn T. Coughlan
  • Marco E. Lübbecke
  • Jens Schulz
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)


Resource leveling is a variant of resource-constrained project scheduling in which a non-regular objective function, the resource availability cost, is to be minimized. We present a branch-and-price approach together with a new heuristic to solve the more general turnaround scheduling problem. Besides precedence and resource constraints, also availability periods and multiple modes per job have to be taken into account. Time-indexed mixed integer programming formulations for similar problems quite often fail already on instances with only 30 jobs, depending on the network complexity and the total freedom of arranging jobs. A reason is the typically very weak linear programming relaxation. In particular for larger instances, our approach gives tighter bounds, enabling us to optimally solve instances with 50 multi-mode jobs.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ach09]
    Achterberg, T.: SCIP: solving constraint integer programs. Math. Programming Computation 1(1), 1–41 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  2. [BC09]
    Bianco, L., Caramia, M.: A new lower bound for the resource-constrained project scheduling problem with generalized precedence relations. Computers and Operations Research (in press, 2009)Google Scholar
  3. [BDM+99]
    Brucker, P., Drexl, A., Möhring, R., Neumann, K., Pesch, E.: Resource-constrained project scheduling: Notation, classification, models, and methods. European J. Oper. Res. 112, 3–41 (1999)zbMATHCrossRefGoogle Scholar
  4. [BK00]
    Brucker, P., Knust, S.: A linear programming and constraint propagation-based lower bound for the RCPSP. European J. Oper. Res. 127(2), 355–362 (2000)zbMATHCrossRefGoogle Scholar
  5. [Dem95]
    Demeulemeester, E.: Minimizing resource availability costs in time-limited project networks. Management Sci. 41, 1590–1598 (1995)zbMATHCrossRefGoogle Scholar
  6. [DH02]
    Demeulemeester, E.L., Herroelen, W.S.: Project Scheduling: A Research Handbook. Kluwer, Dordrecht (2002)zbMATHGoogle Scholar
  7. [DK01]
    Drexl, A., Kimms, A.: Optimization guided lower and upper bounds for the resource investment problem. The Journal of the Operational Research Society 52(3), 340–351 (2001)zbMATHCrossRefGoogle Scholar
  8. [DL05]
    Desrosiers, J., Lübbecke, M.E.: A primer in column generation. In: Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.) Column Generation, pp. 1–32. Springer, Berlin (2005)CrossRefGoogle Scholar
  9. [FNS01]
    Franck, B., Neumann, K., Schwindt, C.: Project scheduling with calendars. OR Spektrum 23, 325–334 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Har01]
    Hartmann, S.: Project scheduling with multiple modes: A genetic algorithm. Ann. Oper. Res. 102(1-4), 111–135 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [HB09]
    Hartmann, S., Briskorn, D.: A survey of variants and extensions of the resource-constrained project scheduling problem. European J. Oper. Res. (in press, 2009)Google Scholar
  12. [MMS10]
    Megow, N., Möhring, R.H., Schulz, J.: Decision support and optimization in shutdown and turnaround scheduling. INFORMS J. Computing (2010) (fourthcoming)Google Scholar
  13. [Möh84]
    Möhring, R.H.: Minimizing costs of resource requirements in project networks subject to a fixed completion time. Oper. Res. 32(1), 89–120 (1984)zbMATHCrossRefGoogle Scholar
  14. [MVH08]
    Mercier, L., Van Hentenryck, P.: Edge finding for cumulative scheduling. INFORMS J. Computing 20(1), 143–153 (2008)CrossRefMathSciNetGoogle Scholar
  15. [NSZ03]
    Neumann, K., Schwindt, C., Zimmermann, J.: Project scheduling with time windows and scarce resources. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  16. [PSP]
    Project Scheduling Problem LIBrary, (last accessed 2010/02/01)
  17. [PWW69]
    Pritsker, A.A.B., Watters, L.J., Wolfe, P.M.: Multi project scheduling with limited resources: A zero-one programming approach. Management Sci. 16, 93–108 (1969)CrossRefGoogle Scholar
  18. [SCI]
    Solving Constraint Integer Programs,
  19. [Zha92]
    Zhan, J.: Calendarization of time planning in MPM networks. ZOR – Methods and Models for Oper. Res. 36(5), 423–438 (1992)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Eamonn T. Coughlan
    • 1
  • Marco E. Lübbecke
    • 2
  • Jens Schulz
    • 1
  1. 1.Institut für MathematikTechnische Universität BerlinBerlinGermany
  2. 2.Fachbereich MathematikTechnische Universität DarmstadtDarmstadtGermany

Personalised recommendations