Exact Bipartite Crossing Minimization under Tree Constraints

  • Frank Baumann
  • Christoph Buchheim
  • Frauke Liers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6049)


A tanglegram consists of a pair of (not necessarily binary) trees. Additional edges, called tangles, may connect the leaves of the first with those of the second tree. The task is to draw a tanglegram with a minimum number of tangle crossings while making sure that the trees are drawn crossing-free. This problem has relevant applications in computational biology, e.g., for the comparison of phylogenetic trees. Most existing approaches are only applicable for binary trees. In this work, we show that the problem can be formulated as a quadratic linear ordering problem (QLO) with side constraints. Buchheim et al. (INFORMS J. Computing, to appear) showed that, appropriately reformulated, the QLO polytope is a face of some cut polytope. It turns out that the additional side constraints do not destroy this property. Therefore, any polyhedral approach to max-cut can be used in our context. We present experimental results for drawing random and real-world tanglegrams defined on both binary and general trees. We evaluate linear as well as semidefinite programming techniques. By extensive experiments, we show that our approach is very efficient in practice.


tanglegram graph drawing computational biology crossing minimization quadratic programming maximum cut problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böcker, S., Hüffner, F., Truss, A., Wahlström, M.: A faster fixed-parameter approach to drawing binary tanglegrams. In: Proc. of International Workshop on Parameterized and Exact Computation, IWPEC 2009 (2009) (to appear)Google Scholar
  2. 2.
    Buchheim, C., Wiegele, A., Zheng, L.: Exact algorithms for the quadratic linear ordering problem. INFORMS J. on Computing (to appear)Google Scholar
  3. 3.
    De Simone, C.: The cut polytope and the boolean quadric polytope. Discrete Mathematics 79, 71–75 (1989)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Eades, P., Wormald, N.C.: Edge crossings in drawing bipartite graphs. Algorithmica 11, 379–403 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization. J. of Computer and System Sciences (2009) (in press)Google Scholar
  6. 6.
    Hafner, M.S., Sudman, P.D., Villablanca, F.X., Spradling, T.A., Demastes, J.W., Nadler, S.A.: Disparate rates of molecular evolution in cospeciating hosts and parasites. Science 265, 1087–1090 (1994)CrossRefGoogle Scholar
  7. 7.
    Holten, D.: Personal communication (2009)Google Scholar
  8. 8.
    ILOG, Inc. ILOG CPLEX 11.2 (2007),
  9. 9.
    Jünger, M., Mutzel, P.: 2-layer straightline crossing minimization: performance of exact and heuristic algorithms. J. Graph Algorithms Appl. 1, 1–25 (1997)MathSciNetGoogle Scholar
  10. 10.
    Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing binary tanglegrams: An experimental evaluation. In: Proc. of the Workshop on Algorithm Engineering and Experiments, ALENEX 2009, pp. 106–119. SIAM, Philadelphia (2009)Google Scholar
  11. 11.
    Page, R.D.M.: Tangled Trees: Phylogeny, Cospeciation, and Coevolution. University of Chicago Press, Chicago (2002)Google Scholar
  12. 12.
    Rendl, F., Rinaldi, G., Wiegele, A.: A branch and bound algorithm for max-cut based on combining semidefinite and polyhedral relaxations. In: Fischetti, M., Williamson, D.P. (eds.) IPCO 2007. LNCS, vol. 4513, pp. 295–309. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Venkatachalam, B., Apple, J., St. John, K., Gusfield, D.: Untangling tanglegrams: Comparing trees by their drawings. In: Măndoiu, I., Narasimhan, G., Zhang, Y. (eds.) ISBRA 2009. LNCS, vol. 5542, pp. 88–99. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Frank Baumann
    • 1
  • Christoph Buchheim
    • 1
  • Frauke Liers
    • 2
  1. 1.Fakultät für MathematikTechnische Universität DortmundDortmundGermany
  2. 2.Institut für InformatikUniversität zu KölnKölnGermany

Personalised recommendations