Efficient Device-Independent Quantum Key Distribution

  • Esther Hänggi
  • Renato Renner
  • Stefan Wolf
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6110)

Abstract

An efficient protocol for quantum key distribution is proposed the security of which is entirely device-independent and not even based on the accuracy of quantum physics. A scheme of that type relies on the quantum-physical phenomenon of non-local correlations and on the assumption that no illegitimate information flows within and between Alice’s and Bob’s laboratories. The latter can be enforced via the non-signaling postulate of relativity if all measurements are carried out simultaneously enough.

References

  1. 1.
    Hänggi, E., Renner, R., Wolf, S.: Quantum cryptography based solely on Bell’s theorem (2009), arxiv:quant-ph/0911.4171Google Scholar
  2. 2.
    Diffie, W., Hellman, M.E.: New directions in cryptography. IEEE Trans. on Information Theory 22(6), 644–654 (1976)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Maurer, U.: A provably-secure strongly-randomized cipher. In: Damgård, I.B. (ed.) EUROCRYPT 1990. LNCS, vol. 473, pp. 361–373. Springer, Heidelberg (1991)Google Scholar
  5. 5.
    Dziembowski, S., Maurer, U.: The bare bounded-storage model: The tight bound on the storage requirement for key agreement. IEEE Trans. on Information Theory 54(6), 2790–2792 (2008)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Wyner, A.D.: The wire-tap channel. Bell System Technical J 54(8), 1355–1387 (1975)MathSciNetGoogle Scholar
  7. 7.
    Csiszár, I., Körner, J.: Broadcast channels with confidential messages. IEEE Trans. on Information Theory 24(3), 339–348 (1978)MATHCrossRefGoogle Scholar
  8. 8.
    Maurer, U.: Conditionally-perfect secrecy and a provably-secure randomized cipher. J. of Cryptology 5(1), 53–66 (1992)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Int. Conf. on Computers, Systems and Signal Processing (1984)Google Scholar
  10. 10.
    Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661–663 (1991)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Gisin, N., Fasel, S., Kraus, B., Zbinden, H., Ribordy, G.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73(2), 022320 (2006)CrossRefGoogle Scholar
  12. 12.
    Fung, C.H.F., Qi, B., Tamaki, K., Lo, H.K.: Phase-remapping attack in practical quantum-key-distribution systems. Phys. Rev. A 75(3), 032314 (2007)CrossRefGoogle Scholar
  13. 13.
    Qi, B., Fung, C.H.F., Lo, H.K., Ma, X.: Time-shift attack in practical quantum cryptosystems. Quantum Information and Computation 7, 073–082 (2007)MATHMathSciNetGoogle Scholar
  14. 14.
    Zhao, Y., Fung, C.H.F., Qi, B., Chen, C., Lo, H.K.: Quantum hacking: Experimental demonstration of time-shift attack against practical quantum-key-distribution systems. Phys. Rev. A 78(4), 042333 (2008)CrossRefGoogle Scholar
  15. 15.
    Makarov, V.: Controlling passively quenched single photon detectors by bright light. New J. of Physics 11(6), 065003 (2009)CrossRefGoogle Scholar
  16. 16.
    Scarani, V., Kurtsiefer, C.: The black paper of quantum cryptography: real implementation problems (2009)Google Scholar
  17. 17.
    Mayers, D.C., Yao, A.: Quantum cryptography with imperfect apparatus. In: FOCS 1998, pp. 503–509 (1998)Google Scholar
  18. 18.
    Barrett, J., Hardy, L., Kent, A.: No signalling and quantum key distribution. Phys. Rev. Lett. 95, 010503 (2005)CrossRefGoogle Scholar
  19. 19.
    Acín, A., Massar, S., Pironio, S.: Efficient quantum key distribution secure against no-signalling eavesdroppers. New J. of Phys. 8(8), 126 (2006)CrossRefGoogle Scholar
  20. 20.
    Scarani, V., Gisin, N., Brunner, N., Masanes, L., Pino, S., Acín, A.: Secrecy extraction from no-signalling correlations. Phys. Rev. A 74(4), 042339 (2006)CrossRefGoogle Scholar
  21. 21.
    Acín, A., Gisin, N., Masanes, L.: From Bell’s theorem to secure quantum key distribution. Phys. Rev. Lett. 97, 120405 (2006)CrossRefGoogle Scholar
  22. 22.
    Acín, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)CrossRefGoogle Scholar
  23. 23.
    McKague, M.: Device independent quantum key distribution secure against coherent attacks with memoryless measurement devices. New J. of Phys. 11(10), 103037 (2009)CrossRefGoogle Scholar
  24. 24.
    Terhal, B.M.: Is entanglement monogamous? IBM J. of Research and Development 48(1), 71–78 (2004)CrossRefGoogle Scholar
  25. 25.
    Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)Google Scholar
  26. 26.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)MATHCrossRefGoogle Scholar
  27. 27.
    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)CrossRefGoogle Scholar
  28. 28.
    Popescu, S., Rohrlich, D.: Quantum nonlocality as an axiom. Found. Phys. 24(3), 379–385 (1994)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. in Math. Phys. 4(2), 93–100 (1980)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Bennett, C.H., Brassard, G., Robert, J.M.: Privacy amplification by public discussion. SIAM J. on Computing 17(2), 210–229 (1988)CrossRefMathSciNetGoogle Scholar
  31. 31.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudo-random generation from one-way functions. In: STOC 1989, pp. 12–24 (1989)Google Scholar
  32. 32.
    Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy amplification. IEEE Trans. on Information Theory 41(6), 1915–1923 (1995)MATHCrossRefGoogle Scholar
  33. 33.
    König, R., Maurer, U., Renner, R.: On the power of quantum memory. IEEE Trans. on Information Theory 51(7), 2391–2401 (2005)CrossRefGoogle Scholar
  34. 34.
    Renner, R., Koenig, R.: Universally composable privacy amplification against quantum adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)Google Scholar
  35. 35.
    Hänggi, E., Renner, R., Wolf, S.: The impossibility of non-signaling privacy amplification (2008)Google Scholar
  36. 36.
    Masanes, L.: Universally composable privacy amplification from causality constraints. Phys. Rev. Lett. 102(14), 140501 (2009)CrossRefGoogle Scholar
  37. 37.
    Masanes, L., Renner, R., Winter, A., Barrett, J., Christandl, M.: Security of key distribution from causality constraints (2009)Google Scholar
  38. 38.
    Maurer, U.: Indistinguishability of random systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  39. 39.
    Pfitzmann, B., Waidner, M.: A model for asynchronous reactive systems and its application to secure message transmission. In: SP 2001, p. 184 (2001)Google Scholar
  40. 40.
    Backes, M., Pfitzmann, B., Waidner, M.: A composable cryptographic library with nested operations. In: CCS 2003, pp. 220–230 (2003)Google Scholar
  41. 41.
    Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: FOCS 2001, p. 136 (2001)Google Scholar
  42. 42.
    Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)MATHGoogle Scholar
  43. 43.
    Carter, J.L., Wegman, M.N.: Universal classes of hash functions (extended abstract). In: STOC 1977, pp. 106–112 (1977)Google Scholar
  44. 44.
    Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994)Google Scholar
  45. 45.
    König, R., Renner, R.: A de Finetti representation for finite symmetric quantum states. J. Math. Phys. 46(122108) (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Esther Hänggi
    • 1
  • Renato Renner
    • 2
  • Stefan Wolf
    • 1
  1. 1.Computer Science DepartmentETH ZurichZürichSwitzerland
  2. 2.Institute for Theoretical PhysicsETH ZurichZürichSwitzerland

Personalised recommendations