Advertisement

Equilibria in Quantitative Reachability Games

  • Thomas Brihaye
  • Véronique Bruyère
  • Julie De Pril
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6072)

Abstract

In this paper, we study turn-based quantitative multiplayer non zero-sum games played on finite graphs with reachability objectives. In this framework each player aims at reaching his own goal as soon as possible. We prove existence of finite-memory Nash (resp. secure) equilibria in multiplayer (resp. two-player) games.

Keywords

Nash equilibrium Turn-based quantitative game Secure equilibrium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Kanade, A., Weiss, G.: Ranking automata and games for prioritized requirements. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 240–253. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Bloem, R., Chatterjee, K., Henzinger, T., Jobstmann, B.: Better quality in synthesis through quantitative objectives. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 140–156. Springer, Heidelberg (2009)Google Scholar
  3. 3.
    Boros, E., Gurvich, V.: Why chess and back gammon can be solved in pure positional uniformly optimal strategies. Rutcor Research Report 21-2009, Rutgers University (2009)Google Scholar
  4. 4.
    Brihaye, T., Bruyère, V., De Pril, J.: Equilibria in Quantitative Reachability Games. Technical Report 122 (2010), http://www.ulb.ac.be/di/ssd/cfv/TechReps/TechRep_CFV_2010_122.pdf
  5. 5.
    Chatterjee, K., Henzinger, T., Jurdziński, M.: Games with secure equilibria. Theoretical Computer Science 365(1-2), 67–82 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Chatterjee, K., Henzinger, T.A.: Finitary winning in omega-regular games. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp. 257–271. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)Google Scholar
  8. 8.
    Grädel, E., Thomas, W., Wilke, T.: Automata, Logics, and Infinite Games. LNCS, vol. 2500. Springer, Heidelberg (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Grädel, E., Ummels, M.: Solution concepts and algorithms for infinite multiplayer games. In: Apt, K., van Rooij, R. (eds.) New Perspectives on Games and Interaction, Texts in Logic and Games, vol. 4, pp. 151–178. Amsterdam University Press (2008)Google Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Introduction to automata theory, languages, and computation. Addison-Wesley Series in Computer Science. Addison-Wesley Publishing Co., Reading (1979)zbMATHGoogle Scholar
  11. 11.
    Horn, F., Thomas, W., Wallmeier, N.: Optimal strategy synthesis in request-response games. In: Cha, S(S.), Choi, J.-Y., Kim, M., Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311, pp. 361–373. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Kuhn, H.: Extensive games and the problem of information. Classics in Game Theory, 46–68 (1953)Google Scholar
  13. 13.
    Nash, J.: Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America 36(1), 48–49 (1950)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Osborne, M., Rubinstein, A.: A course in game theory. MIT Press, Cambridge (1994)Google Scholar
  15. 15.
    Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg (1995)Google Scholar
  16. 16.
    Zimmermann, M.: Time-optimal winning strategies for poset games. In: Maneth, S. (ed.) CIAA 2009. LNCS, vol. 5642, pp. 217–226. Springer, Heidelberg (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Thomas Brihaye
    • 1
  • Véronique Bruyère
    • 1
  • Julie De Pril
    • 1
  1. 1.University of Mons - UMONSMonsBelgium

Personalised recommendations