Advertisement

Solving the Routing and Wavelength Assignment Problem in WDM Networks by Using a Multiobjective Variable Neighborhood Search Algorithm

  • Álvaro Rubio-Largo
  • Miguel A. Vega-Rodríguez
  • Juan A. Gómez-Pulido
  • Juan M. Sánchez-Pérez
Conference paper
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 73)

Abstract

At the present time, the future of communications is focused on optical fiber. The most promising technology is based on Wavelength Division Multiplexing (WDM). This technique divides the bandwidth into different wavelengths avoiding possible bottlenecks, therefore it takes full advantage of the bandwidth of the optical networks. A problem comes up when it is necessary to accomplish a set of transmission demands. This is known as Routing and Wavelength Assignment problem (RWA problem). There are two different types: Static-RWA (unicast demands, the most usual ones) and Dynamic-RWA (multicast demands). In this paper we have focused on the first type, Static-RWA. To solve it, we have used a multiobjective evolutionary algorithm. We have chosen the Variable Neighborhood Search algorithm (VNS), but in a multiobjective context (MO-VNS). After an exhaustive comparison with other authors, we conclude that this algorithm obtains much better results than their approaches.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hamad, A.M., Kamal, A.E.: A survey of multicasting protocols for broadcast-and-select single-hop networks. IEEE Network 16, 36–48 (2002)CrossRefGoogle Scholar
  2. 2.
    Gagnaire, M., Koubaa, M., Puech, N.: Network dimensioning under scheduled and random lightpath demands in all-optical wdm networks. IEEE Journal on Selected Areas in Communications 25(S-9), 58–67 (2007)CrossRefGoogle Scholar
  3. 3.
    Saha, M., Sengupta, I.: A genetic algorithm based approach for static virtual topology design in optical networks. In: IEEE Indicom 2005 Conference, pp. 392–395 (2005)Google Scholar
  4. 4.
    Hansen, P., Mladenovic, N.: Variable neighborhood search: Principles and applications. European Journal of Operational Research 130, 449–467 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Deb, K.: Multi-Objective Optimization Using Evolutionary Algorithms. John Wiley & Sons, Inc., New York (2001)zbMATHGoogle Scholar
  6. 6.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms - a comparative case study, pp. 292–301. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Yen, J.Y.: Finding the k shortest loopless paths in a network. Manage Sci 17(11), 712–716 (2003)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Pinto, D., Barán, B.: Solving multiobjective multicast routing problem with a new ant colony optimization approach. In: LANC 2005: Proceedings of the 3rd international IFIP/ACM Latin American conference on Networking, pp. 11–19. ACM, New York (2005)CrossRefGoogle Scholar
  9. 9.
    Schaerer, M., Barán, B.: A multiobjective ant colony system for vehicle routing problem with time windows. In: IASTED International Conference on Applied Informatics, pp. 97–102 (2003)Google Scholar
  10. 10.
    Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: Empirical results. Evolutionary Computation 8, 173–195 (2000)CrossRefGoogle Scholar
  11. 11.
    Arteta, A., Barán, B., Pinto, D.: Routing and wavelength assignment over wdm optical networks: a comparison between moacos and classical approaches. In: LANC 2007: Proceedings of the 4th international IFIP/ACM Latin American conference on Networking, pp. 53–63. ACM, New York (2007)CrossRefGoogle Scholar
  12. 12.
    Insfrán, C., Pinto, D., Barán, B.: Diseño de topologìas virtuales en redes Ópticas. un enfoque basado en colonia de hormigas. In: XXXII Latin-American Conference on Informatics 2006 - CLEI 2006, vol. 8, pp. 173–195 (2006)Google Scholar
  13. 13.
    Fernandez, J.M., Vila, P., Calle, E., Marzo, J.L.: Design of virtual topologies using the elitist team of multiobjective evolutionary algorithms. In: Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication Systems - SPECTS 2007, pp. 266–271 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Álvaro Rubio-Largo
    • 1
  • Miguel A. Vega-Rodríguez
    • 1
  • Juan A. Gómez-Pulido
    • 1
  • Juan M. Sánchez-Pérez
    • 1
  1. 1.Polytechnic SchoolUniversity of ExtremaduraCáceresSpain

Personalised recommendations