Rhizosphere Signals for Plant–Microbe Interactions: Implications for Field-Grown Plants

  • Ulrike MathesiusEmail author
  • Michelle Watt
Part of the Progress in Botany book series (BOTANY, volume 72)


This review presents an analysis of rhizosphere signals important in plant–microbial interactions that have been studied in controlled conditions and how they may function on field-grown roots. We define rhizosphere signals to be molecules on or emitted from microorganism or root cells that are recognized by other cells and trigger a response. A well-known example are the flavonoids from legume roots, which bind to transcriptional activators in rhizobia bacteria triggering the release of Nod factors (lipochitin oligosaccharides) that bind to root hairs or cortical cells initiating nodule development. Many other signals are reported, e.g., phytohormones, quorum sensing signals (QSS) and their mimics, strigolactones, and exopolysaccharides. Some are involved in infection of roots by symbionts or pathogens; others in growth, physiological, and immune responses caused by commensal organisms that do not invade the root. The signals have so far been largely studied in the classical host–microbe framework in controlled conditions. Field rhizospheres, however, are host–microbe communities that change in space and time. Root surfaces, and thus binding sites for signals, change as the root ages and differentiates, as do chemicals released, which may be energy substrates, signals, or toxins to soil microorganisms in a local patch of soil. The nutritional status and disease susceptibility of the plant and the soil properties are also changing with space and time in the field. These dynamics explain in part why it has been so difficult to translate laboratory effects of signals to the field. Our analysis suggests that signal function in field rhizospheres would depend on (1) compatibility between microorganism populations and root tissue age and cell surfaces for signal–receptor binding, (2) proximity to the root, (3) moisture, and (4) plant nutrition and predisposition to response to microorganisms due to biotic or abiotic factors. These ideas need to be tested. Two major gaps in knowledge are the microorganisms that colonize the rhizosphere and their signals – only a small percentage have been sequenced, and how the plant genetics is regulating the perception and response to the diverse signals that may bind successfully to the root surfaces in the field.


Arbuscular Mycorrhizal Root Hair Root Surface Quorum Sense Fatty Acid Amide Hydrolase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



UM was funded from the Australian Research Council through the Centre of Excellence for Integrative Legume Research (CE0348212) and an Australian Research Fellowship (DP0557692).


  1. Akiyama K, Hayashi H (2006) Strigolactones: chemical signals for fungal symbionts and parasitic weeds in plant roots. Ann Bot 97:925–931PubMedCrossRefGoogle Scholar
  2. Albrecht H, Yoder JI, Phillips DA (1999) Flavonoids promote haustoria formation in the root parasite Triphysaria versicolor. Plant Physiol 119:585–591PubMedCrossRefGoogle Scholar
  3. Antunes PM, Rajcan I, Goss MJ (2006) Specific flavonoids as interconnecting signals in the tripartite symbiosis formed by arbuscular mycorrhizal fungi, Bradyrhizobium japonicum (Kirchner) Jordan and soybean (Glycine max (L.) Merr.). Soil Biol Biochem 38:533–543CrossRefGoogle Scholar
  4. Aoki T, Akashi T, Ayabe S (2000) Flavonoids of leguminous plants: structure, biological activity, and biosynthesis. J Plant Res 113:475–488CrossRefGoogle Scholar
  5. Ardourel M, Demot N, Debelle F, Maillet F, de Billy F, Prome J-C, Denarie J, Truchet G (1994) Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. Plant Cell 6:1357–1374PubMedGoogle Scholar
  6. Arrighi JF, Barre A, Ben Amor B, Bersoult A, Soriano LC, Mirabella R, de Carvalho-Niebel F, Journet EP, Gherardi M, Huguet T, Geurts R, Denarie J, Rouge P, Gough C (2006) The Medicago truncatula lysine motif-receptor-like kinase gene family includes NFP and new nodule-expressed genes. Plant Physiol 142:265–279PubMedCrossRefGoogle Scholar
  7. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8:411–420PubMedCrossRefGoogle Scholar
  8. Bauer WD, Robinson JB (2002) Disruption of bacterial quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237PubMedCrossRefGoogle Scholar
  9. Bauer WD, Teplitski M (2001) Can plants manipulate bacterial quorum sensing? Aust J Plant Physiol 28:913–921Google Scholar
  10. Becard G, Taylor LP, Douds DD, Pfeffer PE, Doner LW (1995) Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbioses. Mol Plant Microbe Interact 8:252–258CrossRefGoogle Scholar
  11. Benoit LF, Berry AM (1997) Flavonoid-like compounds from seeds of red alder (Alnus rubra) influence host nodulation by Frankia (Actinomycetales). Physiol Plant 99:588–593CrossRefGoogle Scholar
  12. Bertin C, Yang XH, Weston LA (2003) The role of root exudates and allelochemicals in the rhizosphere. Plant Soil 256:67–83CrossRefGoogle Scholar
  13. Besserer A, Becard G, Jauneau A, Roux C, Sejalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413PubMedCrossRefGoogle Scholar
  14. Besserer A, Puech-Pages V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais JC, Roux C, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:1239–1247CrossRefGoogle Scholar
  15. Bhuvaneswari TV, Bhagwat AA, Bauer WD (1981) Transient susceptibility of root cells in four common legumes to nodulation by rhizobia. Plant Physiol 68:1144–1149PubMedCrossRefGoogle Scholar
  16. Bodini SF, Manfredini S, Epp M, Valentini S, Santori F (2009) Quorum sensing inhibition activity of garlic extract and p-coumaric acid. Lett Appl Microbiol 49:551–555PubMedCrossRefGoogle Scholar
  17. Bohlool BB, Schmidt EL (1974) Lectins: a possible basis for specificity in the Rhizobium-legume symbiosis. Science 185:269–271PubMedCrossRefGoogle Scholar
  18. Boller T, Felix G (2009) A Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406PubMedCrossRefGoogle Scholar
  19. Bouwmeester HJ, Roux C, Lopez-Raez JA, Becard G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224–230PubMedCrossRefGoogle Scholar
  20. Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26PubMedCrossRefGoogle Scholar
  21. Buee M, De Boer W, Martin F, van Overbeek L, Jurkevitch E (2009) The rhizosphere zoo: an overview of plant-associated communities of microorganisms, including phages, bacteria, archaea, and fungi, and of some of their structuring factors. Plant Soil 321:189–212CrossRefGoogle Scholar
  22. Cha C, Gao P, Chen YC, Shaw PD, Farrand SK (1998) Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11:1119–1129Google Scholar
  23. Chen HC, Higgins J, Oresnik IJ, Hynes MF, Natera S, Djordjevic MA, Weinman JJ, Rolfe BG (2000) Proteome analysis demonstrates complex replicon and luteolin interactions in pSymA-cured derivatives of Sinorhizobium meliloti strain 2011. Electrophoresis 21:3833–3842PubMedCrossRefGoogle Scholar
  24. Chen X, Schauder S, Potier N, Van Dorsselaer A, Pelczer I, Bassler BL, Hughson FM (2002) Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415:545–549PubMedCrossRefGoogle Scholar
  25. Cook CE, Coggon P, McPhail AT, Wall ME, Whichard LP, Egley GH, Luhan PA (1972) Germination stimulants. 2. Structure of strigol – potent seed germination stimulant for witchweed (Striga lutea Lour). J Am Chem Soc 94:6198CrossRefGoogle Scholar
  26. Cook CE, Whichard LP, Turner B, Wall ME (1966) Germination of witchweed (Striga lutea Lour) – isolation and properties of a potent stimulant. Science 154:1189PubMedCrossRefGoogle Scholar
  27. Costacurta A, Vanderleyden J (1995) Synthesis of phytohormones by plant-associated bacteria. Crit Rev Microbiol 21:1–18PubMedCrossRefGoogle Scholar
  28. Crank J (1975) The mathematics of diffusion. Clarendon, OxfordGoogle Scholar
  29. Dakora FD, Phillips DA (1996) Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins. Physiol Mol Plant Pathol 49:1–20CrossRefGoogle Scholar
  30. Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295–298PubMedCrossRefGoogle Scholar
  31. Deakin WJ, Broughton WJ (2009) Symbiotic use of pathogenic strategies: rhizobial protein secretion systems. Nat Rev Microbiol 7:312–320PubMedGoogle Scholar
  32. DeAngelis KM, Brodie EL, DeSantis TZ, Andersen GL, Lindow SE, Firestone MK (2009) Selective progressive response of soil microbial community to wild oat roots. ISME J 3:168–178PubMedCrossRefGoogle Scholar
  33. DeBeer D, Stoodley P, Roe F, Lewandowski Z (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol Bioeng 43:1131–1138CrossRefGoogle Scholar
  34. Delalande L, Faure D, Raffoux A, Uroz S, D'Angelo-Picard C, Elasri M, Carlier A, Berruyer R, Petit A, Williams P, Dessaux Y (2005) N-Hexanoyl-l-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20PubMedCrossRefGoogle Scholar
  35. Denarié J, Débellé F (1996) Rhizobium lipo-chitooligosaccharide nodulation factors: signaling molecules mediating recognition and morphogenesis. Annu Rev Biochem 65:503–535PubMedCrossRefGoogle Scholar
  36. Díaz CL, Melchers LS, Hooykaas PJJ, Lugtenberg EJJ, Kijne JW (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579–581CrossRefGoogle Scholar
  37. Dobbelaere S, Croonenborghs A, Thys A, Vande Broek A, Vanderleyden J (1999) Phytostimulatory effect of Azospirillum brasilense wild type and mutant strains altered in IAA production on wheat. Plant Soil 212:155–164CrossRefGoogle Scholar
  38. Dong YH, Gusti AR, Zhang Q, Xu JL, Zhang LH (2002) Identification of quorum-quenching N-acyl homoserine lactonases from Bacillus species. Appl Environ Microbiol 68:1754–1759PubMedCrossRefGoogle Scholar
  39. Dong YH, Wang LH, Xu JL, Zhang HB, Zhang XF, Zhang LH (2001) Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature 411:813–817PubMedCrossRefGoogle Scholar
  40. Dong YH, Zhang LH (2005) Quorum sensing and quorum-quenching enzymes. J Microbiol 43:101–109PubMedGoogle Scholar
  41. Dulla G, Lindow SE (2008) Quorum size of Pseudomonas syringae is small and dictated by water availability on the leaf surface. Proc Natl Acad Sci USA 105:3082–3087PubMedCrossRefGoogle Scholar
  42. Dunny GM, Leonard BAB (1997) Cell–cell communication in gram-positive bacteria. Annu Rev Microbiol 51:527–564PubMedCrossRefGoogle Scholar
  43. Faure D, Vereecke D, Leveau JHJ (2009) Molecular communication in the rhizosphere. Plant Soil 321:279–303CrossRefGoogle Scholar
  44. Finan TM, Hirsch AM, Leigh JA, Johansen E, Kuldau GA, Deegan S, Walker GC, Signer ER (1985) Symbiotic mutants of Rhizobium meliloti that uncouple plant from bacterial differentiation. Cell 40:869–877PubMedCrossRefGoogle Scholar
  45. Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM (2006a) Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56:195–206PubMedCrossRefGoogle Scholar
  46. Fujishige NA, Kapadia NN, Hirsch AM (2006b) A feeling for the micro-organism: structure on a small scale. Biofilms on plant roots. Bot J Linn Soc 150:79–88CrossRefGoogle Scholar
  47. Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM (2008) Rhizobium common nod genes are required for biofilm formation. Mol Microbiol 67:504–515PubMedCrossRefGoogle Scholar
  48. Fuqua C, Greenberg EP (2002) Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3:685–695PubMedCrossRefGoogle Scholar
  49. Fuqua C, Parsek MR, Greenberg EP (2001) Regulation of gene expression by cell-to-cell communication: acyl-homoserine lactone quorum sensing. Annu Rev Genet 35:439–468PubMedCrossRefGoogle Scholar
  50. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria – the luxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275PubMedGoogle Scholar
  51. Gantner S, Schmid M, Durr C, Schuhegger R, Steidle A, Hutzler P, Langebartels C, Eberl L, Hartmann A, Dazzo FB (2006) In situ quantitation of the spatial scale of calling distances and population density-independent N-acylhomoserine lactone-mediated communication by rhizobacteria colonized on plant roots. FEMS Microbiol Ecol 56:188–194PubMedCrossRefGoogle Scholar
  52. Gherbi H, Markmann K, Svistoonoff S, Estevan J, Autran D, Giczey G, Auguy F, Peret B, Laplaze L, Franche C, Parniske M, Bogusz D (2008) SymRK defines a common genetic basis for plant root endosymbioses with arbuscular mycorrhiza fungi, rhizobia, and Frankia bacteria. Proc Natl Acad Sci USA 105:4928–4932PubMedCrossRefGoogle Scholar
  53. Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Vermeglio A, Medigue C, Sadowsky M (2007) Legumes symbioses: absence of nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312PubMedCrossRefGoogle Scholar
  54. Givskov M, DeNys R, Manefield M, Gram L, Maximilien R, Eberl L, Molin S, Steinberg PD, Kjelleberg S (1996) Eukaryotic interference with homoserine lactone-mediated prokaryotic signaling. J Bacteriol 178:6618–6622PubMedGoogle Scholar
  55. Gochnauer MB, McCully ME, Labbe H (1989) Different populations of bacteria associated with sheathed and bare regions of roots of field-grown maize. Plant Soil 114:107–120CrossRefGoogle Scholar
  56. Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194PubMedCrossRefGoogle Scholar
  57. Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693PubMedCrossRefGoogle Scholar
  58. Gonzalez JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574PubMedCrossRefGoogle Scholar
  59. Goormachtig S, Capoen W, Holsters M (2004) Rhizobium infection: lessons from the versatile nodulation behaviour of water-tolerant legumes. Trends Plant Sci 9:518–522PubMedCrossRefGoogle Scholar
  60. Gotz C, Fekete A, Gebefuegi I, Forczek ST, Fuksova K, Li X, Englmann M, Gryndler M, Hartmann A, Matucha M, Schmitt-Kopplin P, Schroder P (2007) Uptake, degradation and chiral discrimination of N-acyl-D/L-homoserine lactones by barley (Hordeum vulgare) and yam bean (Pachyrhizus erosus) plants. Anal Bioanal Chem 389:1447–1457Google Scholar
  61. Gouws LM, Kossmann J (2009) The molecular analysis of the effects of the rhizosphere signal molecule lumichrome as a plant growth promoter. S Afr J Bot 75:402–403CrossRefGoogle Scholar
  62. Harrison MJ (1997) The arbuscular mycorrhizal symbiosis: an underground association. Trends Plant Sci 2:54–60CrossRefGoogle Scholar
  63. Harrison MJ (1998) Development of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 1:360–365PubMedCrossRefGoogle Scholar
  64. Hartwig UA, Phillips DA (1991) Release and modification of nod gene-inducing flavonoids from alfalfa seeds. Plant Physiol 95:804–807PubMedCrossRefGoogle Scholar
  65. Hense BA, Kuttler C, Mueller J, Rothballer M, Hartmann A, Kreft JU (2007) Opinion – does efficiency sensing unify diffusion and quorum sensing? Nat Rev Microbiol 5:230–239PubMedCrossRefGoogle Scholar
  66. Hirsch AM (1992) Developmental biology of legume nodulation. New Phytol 122:211–237CrossRefGoogle Scholar
  67. Hirsch AM, Bauer WD, Bird DM, Cullimore J, Tyler B, Yoder JI (2003) Molecular signals and receptors: controlling rhizosphere interactions between plants and other organisms. Ecology 84:858–868CrossRefGoogle Scholar
  68. Hooper LV, Gordon JI (2001) Commensal host–bacterial relationships in the gut. Science 292:1115–1118PubMedCrossRefGoogle Scholar
  69. Hooper LV, Wong MH, Thelin A, Hansson L, Falk PC, Gordon JI (2001) Molecular analysis of commensal host–microbial relationships in the intestine. Science 291:881–884PubMedCrossRefGoogle Scholar
  70. Horswill AR, Stoodley P, Stewart PS, Parsek MR (2007) The effect of the chemical, biological, and physical environment on quorum sensing in structured microbial communities. Anal Bioanal Chem 387:371–380PubMedCrossRefGoogle Scholar
  71. Indrasumunar A, Kereszt A, Searle I, Miyagi M, Li D, Nguyen CDT, Men A, Carroll BJ, Gresshoff PM (2010) Inactivation of duplicated Nod-Factor Receptor 5 (NFR5) genes in recessive loss-of-function non-nodulation mutants of allotetraploid soybean (Glycine max L. Merr.). Plant Cell Physiol 51:201–214Google Scholar
  72. Innes RW, Kuempel PL, Plazinski J, Cantercremers H, Rolfe BG, Djordjevic MA (1985) Plant factors induce expression of nodulation and host-range genes in Rhizobium trifolii. Mol Gen Genet 201:426–432CrossRefGoogle Scholar
  73. Jaeger CH, Lindow SE, Miller S, Clark E, Firestone MK (1999) Mapping of sugar and amino acid availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690PubMedGoogle Scholar
  74. Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015PubMedCrossRefGoogle Scholar
  75. Jones DL, Hodge A, Kuzyakov Y (2004) Plant and mycorrhizal regulation of rhizodeposition. New Phytol 163:459–480CrossRefGoogle Scholar
  76. Jones KM, Sharopova N, Lohar DP, Zhang JQ, VandenBosch KA, Walker GC (2008) Differential response of the plant Medicago truncatula to its symbiont Sinorhizobium meliloti or an exopolysaccharide-deficient mutant. Proc Natl Acad Sci USA 105:704–709PubMedCrossRefGoogle Scholar
  77. Jones S, Yu B, Bainton NJ, Birdsall M, Bycroft BW, Chhabra SR, Cox AJR, Golby P, Reeves PJ, Stephens S, Winson MK, Salmond GPC, Stewart GSAB, Williams P (1993) The Lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa. EMBO J 12:2477–2482PubMedGoogle Scholar
  78. Joseph CA, Phillips DA (2003) Metabolites from soil bacteria affect plant water relations. Plant Physiol Biochem 41:189–192CrossRefGoogle Scholar
  79. Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091PubMedCrossRefGoogle Scholar
  80. Kambara K, Ardissone S, Kobayashi H, Saad MM, Schumpp O, Broughton WJ, Deakin WJ (2009) Rhizobia utilize pathogen-like effector proteins during symbiosis. Mol Microbiol 71:92–106PubMedCrossRefGoogle Scholar
  81. Kaufmann GF, Sartorio R, Lee SH, Rogers CJ, Meijler MM, Moss JA, Clapham B, Brogan AP, Dickerson TJ, Janda KD (2005) Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proc Natl Acad Sci USA 102:309–314PubMedCrossRefGoogle Scholar
  82. Kefford NP, Brockwell J, Zwar JA (1960) The symbiotic synthesis of auxin by legumes and nodule bacteria and its role in nodule development. Aust J Biol Sci 13:456–467Google Scholar
  83. Keshavan ND, Chowdhary PK, Haines DC, Gonzalez JE (2005) L-canavanine made by Medicago sativa interferes with quorum sensing in Sinorhizobium meliloti. J Bacteriol 187: 8427–8436Google Scholar
  84. Khan W, Prithiviraj B, Smith DL (2008) Nod factor [Nod Bj V (C-18: 1, MeFuc)] and lumichrome enhance photosynthesis and growth of corn and soybean. J Plant Physiol 165:1342–1351PubMedCrossRefGoogle Scholar
  85. Kikuchi K, Matsushita N, Suzuki K, Hogetsu T (2007) Flavonoids induce germination of basidiospores of the ectomycorrhizal fungus Suillus bovinus. Mycorrhiza 17:563–570PubMedCrossRefGoogle Scholar
  86. Kim HJ, Boedicker JQ, Choi JW, Ismagilov RF (2008) Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proc Natl Acad Sci USA 105:18188–18193PubMedCrossRefGoogle Scholar
  87. Kinkema M, Scott PT, Gresshoff PM (2006) Legume nodulation: successful symbiosis through short- and long-distance signalling. Funct Plant Biol 33:707–721CrossRefGoogle Scholar
  88. Knee EM, Gong FC, Gao MS, Teplitski M, Jones AR, Foxworthy A, Mort AJ, Bauer WD (2001) Root mucilage from pea and its utilization by rhizosphere bacteria as a sole carbon source. Mol Plant Microbe Interact 14:775–784PubMedCrossRefGoogle Scholar
  89. Koltai H, Dor E, Hershenhorn J, Joel DM, Weiniger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Berg R, Kapulnik Y (2009) Strigolactones’ effect on root growth and root hair elongation may be mediated by auxin efflux carriers. J Plant Growth Regul. doi:10.1007/s00344-009-9122-7Google Scholar
  90. Kosuta S, Chabaud M, Lougnon G, Gough C, Denarie J, Barker DG, Becard G (2003) A diffusible factor from arbuscular mycorrhizal fungi induces symbiosis-specific MtENOD11 expression in roots of Medicago truncatula. Plant Physiol 131:952–962PubMedCrossRefGoogle Scholar
  91. Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci USA 105:9823–9828PubMedCrossRefGoogle Scholar
  92. Kuhn H, Küster H, Requena N (2010) Membrane steroid-binding protein 1 induced by a diffusible fungal signal is critical for mycorrhization in Medicago truncatula. New Phytol 185: 716–733Google Scholar
  93. Larose G, Chenevert R, Moutoglis P, Gagne S, Piche Y, Vierheilig H (2002) Flavonoid levels in roots of Medicago sativa are modulated by the developmental stage of the symbiosis and the root colonizing arbuscular mycorrhizal fungus. J Plant Physiol 159:1329–1339CrossRefGoogle Scholar
  94. Le Quere AJL, Deakin WJ, Schmeisser C, Carlson RW, Streit WR, Broughton WJ, Forsberg LS (2006) Structural characterization of a K-antigen capsular polysaccharide essential for normal symbiotic infection in Rhizobium sp NGR234 – deletion of the rkpMNO locus prevents synthesis of 5,7-diacetamido-3,5,7,9-tetradeoxy-non-2-ulosonic acid. J Biol Chem 281:28981–28992PubMedCrossRefGoogle Scholar
  95. Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302:630–633PubMedCrossRefGoogle Scholar
  96. Lin YH, Xu JL, Hu JY, Wang LH, Ong SL, Leadbetter JR, Zhang LH (2003) Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860PubMedCrossRefGoogle Scholar
  97. Long SR (1989) Rhizobium-legume nodulation – life together in the underground. Cell 56:203–214PubMedCrossRefGoogle Scholar
  98. Lopez-Raez JA, Charnikhova T, Gomez-Roldan V, Matusova R, Kohlen W, De Vos R, Verstappen F, Puech-Pages V, Becard G, Mulder P, Bouwmeester H (2008) Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation. New Phytol 178:863–874PubMedCrossRefGoogle Scholar
  99. Madsen EB, Madsen LH, Radutoiu S, Olbryt M, Rakwalska M, Szczyglowski K, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J (2003) A receptor kinase gene of the LysM type is involved in legume perception of rhizobial signals. Nature 425:637–640PubMedCrossRefGoogle Scholar
  100. Mäe A, Montesano M, Koiv V, Palva ET (2001) Transgenic plants producing the bacterial pheromone N-acyl-homoserine lactone exhibit enhanced resistance to the bacterial phytopathogen Erwinia carotovora. Mol Plant Microbe Interact 14:1035–1042PubMedCrossRefGoogle Scholar
  101. Manefield M, de Nys R, Kumar N, Read R, Givskov M, Steinberg P, Kjelleberg SA (1999) Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145:283–291PubMedCrossRefGoogle Scholar
  102. Mark GL, Dow JM, Kiely PD, Higgins H, Haynes J, Baysse C, Abbas A, Foley T, Franks A, Morrissey J, O'Gara F (2005) Transcriptome profiling of bacterial responses to root exudates identifies genes involved in microbe–plant interactions. Proc Natl Acad Sci USA 102:17454–17459PubMedCrossRefGoogle Scholar
  103. Marketon MM, Glenn SA, Eberhard A, Gonzalez JE (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331PubMedCrossRefGoogle Scholar
  104. Markmann K, Giczey G, Parniske M (2008) Functional adaptation of a plant receptor-kinase paved the way for the evolution of intracellular root symbioses with bacteria. PLoS Biol 6:497–506CrossRefGoogle Scholar
  105. Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86PubMedCrossRefGoogle Scholar
  106. Marschner P, Neumann G, Kania A, Weiskopf L, Lieberei R (2002) Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant Soil 246:167–174CrossRefGoogle Scholar
  107. Masson-Boivin C, Giraud E, Perret X, Batut J (2009) Establishing nitrogen-fixing symbiosis with legumes: how many rhizobium recipes? Trends Microbiol 17:458–466PubMedCrossRefGoogle Scholar
  108. Mathesius U, Mulders S, Gao MS, Teplitski M, Caetano-Anolles G, Rolfe BG, Bauer WD (2003) Extensive and specific responses of a eukaryote to bacterial quorum-sensing signals. Proc Natl Acad Sci USA 100:1444–1449PubMedCrossRefGoogle Scholar
  109. Matiru VN, Dakora FD (2005) The rhizosphere signal molecule lumichrome alters seedling development in both legumes and cereals. New Phytol 166:439–444PubMedCrossRefGoogle Scholar
  110. McCully ME (1999) Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev Plant Physiol Plant Mol Biol 50:695–718PubMedCrossRefGoogle Scholar
  111. McCully ME, Canny MJ, Huang CX (2009) Cryo-scanning electron microscopy (CSEM) in the advancement of functional plant biology. Morphological and anatomical applications. Funct Plant Biol 36:97–124CrossRefGoogle Scholar
  112. McMahon KD, Martin HG, Hugenholtz P (2007) Integrating ecology into biotechnology. Curr Opin Biotechnol 18:287–292PubMedCrossRefGoogle Scholar
  113. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199PubMedCrossRefGoogle Scholar
  114. Moulin L, Munive A, Dreyfus B, Boivin-Masson C (2001) Nodulation of legumes by members of the beta-subclass of proteobacteria. Nature 411:948–950PubMedCrossRefGoogle Scholar
  115. Mulligan JT, Long SR (1985) Induction of Rhizobium meliloti NodC expression by plant exudates requires NodD. Proc Natl Acad Sci USA 82:6609–6613PubMedCrossRefGoogle Scholar
  116. Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by Rhizobium in the absence of nodule organogenesis. Science 315:101–104PubMedCrossRefGoogle Scholar
  117. Navazio L, Moscatiello R, Genre A, Novero M, Baldan B, Bonfante P, Mariani P (2007) A diffusible signal from arbuscular mycorrhizal fungi elicits a transient cytosolic calcium elevation in host plant cells. Plant Physiol 144:673–681PubMedCrossRefGoogle Scholar
  118. Nichol SA, Silk WK (2001) Empirical evidence of a convection-diffusion model for pH patterns in the rhizospheres of root tips. Plant Cell Environ 24:967–974CrossRefGoogle Scholar
  119. Normand P, Lapierre P, Tisa LS, Gogarten JP, Alloisio N, Bagnarol E, Bassi CA, Berry AM, Bickhart DM, Choisne N, Couloux A, Cournoyer B, Cruveiller S, Daubin V, Demange N, Francino MP, Goltsman E, Huang Y, Kopp OR, Labarre L, Lapidus A, Lavire C, Marechal J, Martinez M, Mastronunzio JE, Mullin BC, Niemann J, Pujic P, Rawnsley T, Rouy Z, Schenowitz C, Sellstedt A, Tavares F, Tomkins JP, Vallenet D, Valverde C, Wall LG, Wang Y, Medigue C, Benson DR (2007) Genome characteristics of facultatively symbiotic Frankia sp strains reflect host range and host plant biogeography. Genome Res 17:7–15PubMedCrossRefGoogle Scholar
  120. Olah B, Briere C, Becard G, Denarie J, Gough C (2005) Nod factors and a diffusible factor from arbuscular mycorrhizal fungi stimulate lateral root formation in Medicago truncatula via the DMI1/DMI2 signalling pathway. Plant J 44:195–207PubMedCrossRefGoogle Scholar
  121. Oldroyd GED, Downie JA (2006) Nuclear calcium changes at the core of symbiosis signalling. Curr Opin Plant Biol 9:351–357PubMedCrossRefGoogle Scholar
  122. Oldroyd GED, Downie JM (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546PubMedCrossRefGoogle Scholar
  123. Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754PubMedCrossRefGoogle Scholar
  124. Olesen T, Moldrup P, Yamaguchi T, Nissen HH, Rolston DE (2000) Modified half-cell method for measuring the solute diffusion coefficient in undisturbed, unsaturated soil. Soil Sci 165:835–840CrossRefGoogle Scholar
  125. Ortiz-Castro R, Martinez-Trujillo M, Lopez-Bucio J (2008) N-acyl-L-homoserine lactones: a class of bacterial quorum-sensing signals alter post-embryonic root development in Arabidopsis thaliana. Plant Cell Enviro 31: 1497–1509Google Scholar
  126. Osborne CA, Peoples MB, Janssen PH (2010) Detection of a reproducible, single-member shift in soil bacterial communities exposed to low levels of hydrogen. Appl Environ Microbiol 76:1471–1479Google Scholar
  127. Ozan A, Safir GR, Nair MG (1997) Persistence of isoflavones formononetin and biochanin A in soil and their effects on soil microbe populations. J Chem Ecol 23:247–258CrossRefGoogle Scholar
  128. Peoples MB, Brockwell J, Herridge DF, Rochester IJ, Alves BJR, Urquiaga S, Boddey RM, Dakora FD, Bhattarai S, Maskey SL, Sampet C, Rerkasem B, Khan DF, Hauggaard-Nielsen H, Jensen ES (2009) The contributions of nitrogen-fixing crop legumes to the productivity of agricultural systems. Symbiosis 48:1–17CrossRefGoogle Scholar
  129. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground: molecular plant–rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  130. Peters NK, Frost JW, Long SR (1986) The flavone, luteolin, induces expression of Rhizobium meliloti nodulation genes. Science 233:977–990PubMedCrossRefGoogle Scholar
  131. Phillips DA, Joseph CM, Yang GP, Martinez-Romero E, Sanborn JR, Volpin H (1999) Identification of lumichrome as a Sinorhizobium enhancer of alfalfa root respiration and shoot growth. Proc Natl Acad Sci USA 96:12275–12280PubMedCrossRefGoogle Scholar
  132. Pii Y, Crimi M, Cremonese G, Spena A, Pandolfini T (2007) Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol 7:21PubMedCrossRefGoogle Scholar
  133. Pillai BVS, Swarup S (2002) Elucidation of the flavonoid catabolism pathway in Pseudomonas putida PML2 by comparative metabolic profiling. Appl Environ Microbiol 68:143–151PubMedCrossRefGoogle Scholar
  134. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Umehara Y, Gronlund M, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedCrossRefGoogle Scholar
  135. Radutoiu S, Madsen LH, Madsen EB, Jurkiewicz A, Fukai E, Quistgaard EMH, Albrektsen AS, James EK, Thirup S, Stougaard J (2007) LysM domains mediate lipochitin-oligosaccharide recognition and Nfr genes extend the symbiotic host range. EMBO J 26:3923–3935PubMedCrossRefGoogle Scholar
  136. Rajamani S, Bauer WD, Robinson JB, Farrow JM, Pesci EC, Teplitski M, Gao MS, Sayre RT, Phillips DA (2008) The vitamin riboflavin and its derivative lumichrome activate the LasR bacterial quorum-sensing receptor. Mol Plant Microbe Interact 21:1184–1192PubMedCrossRefGoogle Scholar
  137. Ramey BE, Koutsoudis M, von Bodman SB, Fuqua C (2004) Biofilm formation in plant–microbe associations. Curr Opin Microbiol 7:602–609PubMedCrossRefGoogle Scholar
  138. Rao JR, Cooper JE (1995) Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that can influence gene-inducing activity. Mol Plant Microbe Interact 8:855–862CrossRefGoogle Scholar
  139. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370PubMedCrossRefGoogle Scholar
  140. Redmond JW, Batley M, Djordjevic MA, Innes RW, Kuempel PL, Rolfe BG (1986) Flavones induce expression of nodulation genes in Rhizobium. Nature 323:632–635CrossRefGoogle Scholar
  141. Reinhold-Hurek B, Hurek T (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:139–144PubMedCrossRefGoogle Scholar
  142. Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta A, Giordano W (2006) Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol 157:867–875PubMedCrossRefGoogle Scholar
  143. Rolfe BG, Gresshoff PM (1988) Genetic analysis of legume nodule initiation. Annu Rev Plant Physiol Plant Mol Biol 39:297–319CrossRefGoogle Scholar
  144. Ryan PR, Dessaux Y, Thomashow LS, Weller DM (2009) Rhizosphere engineering and management for sustainable agriculture. Plant Soil 321:363–383CrossRefGoogle Scholar
  145. Sait M, Hugenholtz P, Janssen PH (2002) Cultivation of globally distributed soil bacteria from phylogenetic lineages previously only detected in cultivation-independent surveys. Environ Microbiol 4:654–666PubMedCrossRefGoogle Scholar
  146. Scervino JM, Ponce MA, Erra-Bassells R, Vierheilig H, Ocampo JA, Godeas A (2005) Flavonoids exhibit fungal species and genus specific effects on the presymbiotic growth of Gigaspora and Glomus. Mycol Res 109:789–794PubMedCrossRefGoogle Scholar
  147. Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Bittan-Banin G, Peres CM, Schmidt S, Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-sensing signals. Nature 454:595–U596PubMedCrossRefGoogle Scholar
  148. Schell MA (1993) Molecular biology of the LysR family of transcriptional regulators. Annu Rev Microbiol 47:597–626PubMedCrossRefGoogle Scholar
  149. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedCrossRefGoogle Scholar
  150. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefGoogle Scholar
  151. Smit P, Limpens E, Geurts R, Fedorova E, Dolgikh E, Gough C, Bisseling T (2007) Medicago LYK3, an entry receptor in rhizobial nodulation factor signaling. Plant Physiol 145:183–191PubMedCrossRefGoogle Scholar
  152. Somers E, Vanderleyden J, Srinivasan M (2004) Rhizosphere bacterial signalling: a love parade beneath our feet. Crit Rev Microbiol 30:205–240PubMedCrossRefGoogle Scholar
  153. Sorensen J, Nicolaisen MH, Ron E, Simonet P (2009) Molecular tools in rhizosphere microbiology-from single-cell to whole-community analysis. Plant Soil 321:483–512CrossRefGoogle Scholar
  154. Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385CrossRefGoogle Scholar
  155. Spaink HP (1996) Regulation of plant morphogenesis by lipo-chitin oligosaccharides. Crit Rev Plant Sci 15:559–582Google Scholar
  156. Spaink HP, Sheeley DM, Vanbrussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ (1991) A novel highly unsaturated fatty-acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130PubMedCrossRefGoogle Scholar
  157. Sprague SJ, Watt M, Kirkegaard JA, Howlett BJ (2007) Pathways of infection of Brassica napus roots by Leptosphaeria maculans. New Phytol 176:211–222PubMedCrossRefGoogle Scholar
  158. Sprent JI (2008) Evolution and diversity of legume symbiosis. In: Dilworth MJ, James EK, Sprent JI, Newton WE (eds) Nitrogen-fixing leguminous symbioses, vol 7. Springer, Dordrecht, pp 1–21CrossRefGoogle Scholar
  159. Steidle A, Sigl K, Schuhegger R, Ihring A, Schmid M, Gantner S, Stoffels M, Riedel K, Givskov M, Hartmann A, Langebartels C, Eberl L (2001) Visualization of N-acylhomoserine lactone-mediated cell–cell communication between bacteria colonizing the tomato rhizosphere. Appl Environ Microbiol 67:5761–5770PubMedCrossRefGoogle Scholar
  160. Stevens GA, Berry AM (1988) Cytokinin secretion by Frankia sp. HFP ARI3 in defined medium. Plant Physiol 87:15–16PubMedCrossRefGoogle Scholar
  161. Stewart A (2001) Commercial biocontrol – reality or fantasy? Australas Plant Pathol 30:127–131CrossRefGoogle Scholar
  162. Sturtevant DB, Taller BJ (1989) Cytokinin production by Bradyrhizobium japonicum. Plant Physiol 89:1247–1252PubMedCrossRefGoogle Scholar
  163. Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273PubMedCrossRefGoogle Scholar
  164. Swensen SM (1996) The evolution of actinorhizal symbioses: evidence for multiple origins of the symbiotic association. Am J Bot 83:1503–1512CrossRefGoogle Scholar
  165. Taga ME (2007) Bacterial signal destruction. ACS Chem Biol 2:89–92PubMedCrossRefGoogle Scholar
  166. Taga ME, Bassler BL (2003) Chemical communication among bacteria. Proc Natl Acad Sci USA 100:14549–14554PubMedCrossRefGoogle Scholar
  167. Teplitski M, Robinson JB, Bauer WD (2000) Plants secrete substances that mimic bacterial N-acyl homoserine lactone signal activities and affect population density-dependent behaviors in associated bacteria. Mol Plant Microbe Interact 13: 637–648Google Scholar
  168. Thrall PH, Burdon JJ, Woods MJ (2000) Variation in the effectiveness of symbiotic associations between native rhizobia and temperate Australian legumes: interactions within and between genera. J Appl Ecol 37:52–65CrossRefGoogle Scholar
  169. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107PubMedCrossRefGoogle Scholar
  170. Toth IK, Newton JA, Hyman LJ, Lees AK, Daykin M, Ortori C, Williams P, Fray RG (2004) Potato plants genetically modified to produce N-acylhomoserine lactones increase susceptibility to soft rot Erwiniae. Mol Plant Microbe Interact 17:880–887PubMedCrossRefGoogle Scholar
  171. Tsai SM, Phillips DA (1991) Flavonoids released naturally from alfalfa promote development of symbiotic Glomus spores in vitro. Appl Environ Microbiol 57:1485–1488PubMedGoogle Scholar
  172. Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–U129PubMedCrossRefGoogle Scholar
  173. van Noorden GE, Ross JJ, Reid JB, Rolfe BG, Mathesius U (2006) Defective long distance auxin transport regulation in the Medicago truncatula super numerary nodules mutant. Plant Physiol 140:1494–1506PubMedCrossRefGoogle Scholar
  174. van Rhijn P, Fujishige NA, Lim PO, Hirsch AM (2001) Sugar-binding activity of pea lectin enhances heterologous infection of transgenic alfalfa plants by Rhizobium leguminosarum biovar viciae. Plant Physiol 126:133–144PubMedCrossRefGoogle Scholar
  175. van Rhijn P, Goldberg RB, Hirsch AM (1998) Lotus corniculatus nodulation specificity is changed by the presence of a soybean lectin gene. Plant Cell 10:1233–1249PubMedGoogle Scholar
  176. Vandeputte OM, Kiendrebeogo M, Rajaonson S, Diallo B, Mol A, El Jaziri M, Baucher M (2010) Identification of catechin as one of the flavonoids from Combretum albiflorum bark extract that reduces the production of quorum-sensing-controlled virulence factors in Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 76:243–253PubMedCrossRefGoogle Scholar
  177. Vermeer J, McCully ME (1982) The rhizosphere in Zea – new insight into its structure and development. Planta 156:45–61CrossRefGoogle Scholar
  178. von Bodman SB, Bauer WD, Coplin DL (2003) Quorum sensing in plant-pathogenic bacteria. Annu Rev Phytopathol 41:455–482CrossRefGoogle Scholar
  179. von Rad U, Klein I, Dobrev PI, Kottova J, Zazimalova E, Fekete A, Hartmann A, Schmitt-Kopplin P, Durner J (2008) Response of Arabidopsis thaliana to N-hexanoyl-DL-homoserine-lactone, a bacterial quorum sensing molecule produced in the rhizosphere. Planta 229: 73–85Google Scholar
  180. Walker TS, Bais HP, Grotewold E, Vivanco JM (2003a) Root exudation and rhizosphere biology. Plant Physiol 132:44–51PubMedCrossRefGoogle Scholar
  181. Walker TS, Bais HP, Halligan KM, Stermitz FR, Vivanco JM (2003b) Metabolic profiling of root exudates of Arabidopsis thaliana. J Agric Food Chem 51:2548–2554PubMedCrossRefGoogle Scholar
  182. Wan JR, Zhang XC, Neece D, Ramonell KM, Clough S, Kim SY, Stacey MG, Stacey G (2008) A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20:471–481PubMedCrossRefGoogle Scholar
  183. Wang YJ, Leadbetter JR (2005) Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl Environ Microbiol 71:1291–1299PubMedCrossRefGoogle Scholar
  184. Wasson AP, Pellerone FI, Mathesius U (2006) Silencing the flavonoid pathway in Medicago truncatula inhibits root nodule formation and prevents auxin transport regulation by rhizobia. Plant Cell 18:1617–1629PubMedCrossRefGoogle Scholar
  185. Watt M, Hugenholtz P, White R, Vinall K (2006a) Numbers and locations of native bacteria on field-grown wheat roots quantified by fluorescence in situ hybridization (FISH). Environ Microbiol 8:871–884PubMedCrossRefGoogle Scholar
  186. Watt M, Kirkegaard JA, Passioura JB (2006b) Rhizosphere biology and crop productivity – a review. Aust J Soil Res 44:299–317CrossRefGoogle Scholar
  187. Watt M, Kirkegaard JA, Rebetzke GJ (2005) A wheat genotype developed for rapid leaf growth copes well with the physical and biological constraints of unploughed soil. Funct Plant Biol 32:695–706CrossRefGoogle Scholar
  188. Watt M, McCully ME, Kirkegaard JA (2003) Soil strength and rate of root elongation alter the accumulation of Pseudomonas spp. and other bacteria in the rhizosphere of wheat. Funct Plant Biol 30:483–491CrossRefGoogle Scholar
  189. Watt M, Silk WK, Passioura JB (2006c) Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann Bot 97:839–855PubMedCrossRefGoogle Scholar
  190. Whitehead NA, Barnard AML, Slater H, Simpson NJL, Salmond GPC (2001) Quorum-sensing in gram-negative bacteria. FEMS Microbiol Rev 25:365–404PubMedCrossRefGoogle Scholar
  191. Yang WW, Han JI, Leadbetter JR (2006) Utilization of homoserine lactone as a sole source of carbon and energy by soil Arthrobacter and Burkholderia species. Arch Microbiol 185:47–54PubMedCrossRefGoogle Scholar
  192. Yoneyama K, Xie XN, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–494PubMedCrossRefGoogle Scholar
  193. Yuan ZC, Edlind MP, Liu P, Saenkham P, Banta LM, Wise AA, Ronzone E, Binns AN, Kerr K, Nester EW (2007) The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium. Proc Natl Acad Sci USA 104: 11790–11795Google Scholar
  194. Zhang JH, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183PubMedCrossRefGoogle Scholar
  195. Zipfel C (2008) Pattern-recognition receptors in plant innate immunity. Curr Opin Immunol 20:10–16PubMedCrossRefGoogle Scholar
  196. Zuanazzi JAS, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 11:784–794CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.ARC Centre of Excellence for Integrative Legume Research, Division of Plant Science, Research School of BiologyAustralian National UniversityCanberraAustralia
  2. 2.CSIRO Plant Industry, Black Mountain LaboratoriesCanberraAustralia

Personalised recommendations