Advertisement

Mining Protein-Protein Interactions from GeneRIFs with OpenDMAP

  • Andrew D. Fox
  • William A. BaumgartnerJr.
  • Helen L. Johnson
  • Lawrence E. Hunter
  • Donna K. Slonim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6004)

Abstract

We applied the OpenDMAP [1] and BioNLP-UIMA [2] NLP systems to the task of mining protein-protein interactions (PPIs) from GeneRIFs. Our goal was to assess and improve system performance on GeneRIF text. We identified several classes of errors in the system’s output on a training dataset (most notably difficulty recognizing protein complexes) and modified the system to improve performance based on these observations. To improve recognition of protein complex interactions, we implemented a new protein-complex-resolution UIMA component. We added a custom entity identification engine that uses GeneRIF metadata to annotate proteins that may have been missed by the other engines. These changes simultaneously improved both recall and precision, resulting in an overall improvement in F-measure (from 0.23 to 0.48). Results confirm that the targeted enhancements described here lead to a substantial improvement in performance.

Availability: Annotated data sets and source code for the new UIMA components can be found at http://bcb.cs.tufts.edu/GeneRIFs/

Keywords

Concept Recognition Metadata Tagger Gene Ontology Annota Entrez Gene Entry Interaction Pair Subtask 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hunter, L., Lu, Z., Firby, J., Baumgartner, W., Johnson, H., Ogren, P., Cohen, K.: OpenDMAP: An open source, ontology-driven concept analysis engine, with applications to capturing knowledge regarding protein transport, protein interactions and cell-type-specific gene expression. BMC Bioinformatics 9(1), 78 (2008)CrossRefGoogle Scholar
  2. 2.
    BioNLP UIMA Component Repository, http://bionlp-uima.sourceforge.net/
  3. 3.
    Baumgartner, W.A., Cohen, K.B., Fox, L.M., Acquaah-Mensah, G., Hunter, L.: Manual curation is not sufficient for annotation of genomic databases. Bioinformatics 23(14) (2007)Google Scholar
  4. 4.
    Krallinger, M., Leitner, F., Rodriguez-Penagos, C., Valencia, A.: Overview of the protein-protein interaction annotation extraction task of BioCreative II. Genome Biol. 9(Suppl. 2), S4: 41–55 (2008)Google Scholar
  5. 5.
    Winnenburg, R., Wachter, T., Plake, C., Doms, A., Schroeder, M.: Facts from text: can text mining help to scale-up high-quality manual curation of gene products with ontologies? Brief Bioinform. 9(6), 466–478 (2008)CrossRefGoogle Scholar
  6. 6.
    Lu, Z., Cohen, K.B., Hunter, L.E.: GeneRIF quality assurance as summary revision. In: Pac. Symp. Biocomput., pp. 269–280 (2007)Google Scholar
  7. 7.
    Mitchell, J.A., Aronson, A.R., Mork, J.G., Folk, L.C., Humphrey, S.M., Ward, J.M.: Gene indexing: characterization and analysis of NLM’s GeneRIFs. In: AMIA Annu. Symp. Proc., pp. 460–464 (2003)Google Scholar
  8. 8.
    Lu, Z., Cohen, K.B., Hunter, L.E.: Finding GeneRIFs via Gene Ontology annotations. In: Pac. Symp. Biocomput., pp. 52–63 (2006)Google Scholar
  9. 9.
    Ding, J., Berleant, D., Nettleton, D., Wurtele, E.: Mining MEDLINE: Abstracts, Sentences, or Phrases? In: Pac. Symp. on Biocomput., vol. 7, pp. 326–337 (2002)Google Scholar
  10. 10.
    Lu, Z.: Text Mining on GeneRIFs. PhD Thesis, Univeristy of Colorado (2007)Google Scholar
  11. 11.
    Blaschke, C., Andrade, M.A., Ouzounis, C., Valencia, A.: Automatic extraction of biological information from scientific text: protein-protein interactions. In: Proc. Int. Conf. Intell. Syst. Mol. Biol., pp. 60–67 (1999)Google Scholar
  12. 12.
    Morgan, A., Lu, Z., Wang, X., Cohen, A., Fluck, J., et al.: Overview of BioCreative II gene normalization. Genome Biol. 9(Suppl. 2), S3 (2008)CrossRefGoogle Scholar
  13. 13.
    Apache: Apache UIMA, http://incubator.apache.org/uima/
  14. 14.
    Alias-i. 2008.: LingPipe 3.8.2 (2008), http://alias-i.com/lingpipe/
  15. 15.
    Settles, B.: ABNER: an open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics 21(14), 3191–3192 (2005)CrossRefGoogle Scholar
  16. 16.
    Hirschman, L., Colosimo, M., Morgan, A., Yeh, A.: Overview of BioCreative task 1B: normalized gene lists. BMC Bioinfo. 6(Suppl. 1), S11 (2005)CrossRefGoogle Scholar
  17. 17.
    Alex, B., Grover, C., Haddow, B., Kabadjor, M., Klein, E., Matthews, M., Roebuck, S., Tobin, R., Wang, X.: Assisted Curation: Does Text Mining Really Help? In: Pac. Symp. Biocomput., pp. 556–567 (2008)Google Scholar
  18. 18.
    Leaman, R., Gonzalez, G.: BANNER: An executable survey of advances in biomedical named entity recognition. In: Pac. Symp. Biocomput., vol. 13, pp. 652–663 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Andrew D. Fox
    • 1
  • William A. BaumgartnerJr.
    • 2
  • Helen L. Johnson
    • 2
  • Lawrence E. Hunter
    • 2
  • Donna K. Slonim
    • 1
    • 3
  1. 1.Department of Computer ScienceTufts UniversityMedford
  2. 2.Center for Computational PharmacologyUniversity of Colorado School of MedicineAurora
  3. 3.Department of PathologyTufts University School of MedicineBoston

Personalised recommendations