The Computational Complexity of the Kakuro Puzzle, Revisited

  • Oliver Ruepp
  • Markus Holzer
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6099)

Abstract

We present a new proof of NP-completeness for the problem of solving instances of the Japanese pencil puzzle Kakuro (also known as Cross-Sum). While the NP-completeness of Kakuro puzzles has been shown before [T. Seta. The complexity of CROSS SUM. IPSJ SIG Notes, AL-84:51–58, 2002], there are still two interesting aspects to our proof: we show NP-completeness for a new variant of Kakuro that has not been investigated before and thus improves the aforementioned result. Moreover some parts of the proof have been generated automatically, using an interesting technique involving SAT solvers.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)Google Scholar
  2. 2.
    Friedman, E.: Corral puzzles are NP-complete. Technical report, Stetson University, DeLand, FL 32723 (2002)Google Scholar
  3. 3.
    Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)Google Scholar
  4. 4.
    Holzer, M., Ruepp, O.: The troubles of interior design-a complexity analysis of the game heyawake. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds.) FUN 2007. LNCS, vol. 4475, pp. 198–212. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Lichtenstein, D.: Planar formulae and their uses. SIAM Journal on Computing 11(2), 329–343 (1982)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets of complexity). Journal of Computer and System Sciences 28(2), 244–259 (1984)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Seta, T.: The complexities of puzzles, cross sum and their another solution problems (asp). Senior thesis, Univerity of Tokyo, Deptartment of Information Science, Faculty of Science, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan (February 2001)Google Scholar
  8. 8.
    Seta, T.: The complexity of CROSS SUM. IPSJ SIG Notes, AL-84, 51–58 (2002) (in Japanese)Google Scholar
  9. 9.
    Ueda, N., Nagao, T.: NP-completeness results for NONOGRAM via parsimonious reductions. Technical Report TR96-0008, Department of Computer Science, Tokyo Institut of Technology, Ôokayama 2-12-1 Meguro Tokyo 152-8552, Japan (May 1996)Google Scholar
  10. 10.
    Valiant, L.G., Vazirani, V.V.: NP is as easy as detecting unique solutions. Theoretical Computer Science 47(3), 85–93 (1986)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Yato, T.: Complexity and completeness of finding another solution and its application to puzzles. Master’s thesis, Univerity of Tokyo, Deptartment of Information Science, Faculty of Science, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan (January 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Oliver Ruepp
    • 1
  • Markus Holzer
    • 2
  1. 1.Institut für InformatikTechnische Universität MünchenGarching bei MünchenGermany
  2. 2.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations