Prototype Software for Video Summary of Bronchoscopy Procedures with the Use of Mechanisms Designed to Identify, Index and Search

  • Mikołaj Leszczuk
  • Michał Grega
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 69)

Abstract

Individual bronchoscopy test event takes about 20 minutes. Most of this time is the video recording process, placing and removing bronchoscope endings in the patient’s airways. A sizable part of the record is unreadable because of obstruction by secretion of physiological image. The analysis of such recordings for teaching purposes or diagnostic tests is time-consuming — the doctor or student is forced to view a large number recordings of little value to find the fragments of interest — those showing lesions. In research, we develop a prototype system to create shortcuts (called summaries or abstracts) of bronchoscopy research recordings. Such a system, based on the model described in the preceding paper paragraphs uses image analysis methods to delete the recording fragments of the bronchoscopy test which have no diagnostic value for teaching and create a few minute-long, valuable video sequences.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kender, J.R., Lock Yeo, B.: Video scene segmentation via continuous video coherence. In: Proc. IEEE Int. Conf. on Computer Vision and Pattern Recognition, pp. 367–373 (1998)Google Scholar
  2. 2.
    Adjeroh, D.A., Lee, M.C.: Scene-adaptive transform domain video partitioning. IEEE Transactions on Multimedia 6, 58–69 (2004)CrossRefGoogle Scholar
  3. 3.
    Aghbari, Z.A., Kaneko, K., Makinouchi, A.: A Content-trajectory approach for searching video databases. IEEE Transactions on Multimedia 5, 516–531 (2003)CrossRefGoogle Scholar
  4. 4.
    Fan, J., Elmagarmid, A.K., Member, S., Zhu, X., Aref, W.G., Wu, L.: Classview: Hierarchical video shot classification, indexing, and accessing. IEEE Trans. on Multimedia 6, 70–86 (2004)CrossRefGoogle Scholar
  5. 5.
    Skarbek, W., Galiński, G., Wnukowicz, K.: Tree Based Multimedia Indexing — a Survey. In: Proc. Krajowa Konferencja Radiokomunikacji, Radiofonii i Telewizji KKRRiT 2004. Konferencja Radiokomunikacji, Radiofonii i Telewizji, Warszawa, Krajowa, pp. 77–85 (2004)Google Scholar
  6. 6.
    Yuen Chen, J., Taskiran, C., Taskran, C., Albiol, A., Delp, E., Bouman, C.: Vibe: A compressed video database structured for active browsing and search (2001)Google Scholar
  7. 7.
    Lombardo, A., Morabito, G., Schembra, G.: Modeling intramedia and intermedia relationships in multimedia network analysis through multiple timescale statistics. IEEE Transactions on Multimedia 6, 142–157 (2004)CrossRefGoogle Scholar
  8. 8.
    Walid, X.Z., Walid, G., et al.: Medical video mining for efficient database indexing, management and access (2003)Google Scholar
  9. 9.
    Zhu, X., Fan, J., Aref, W.G., Elmagarmid, A.K.: Classminer: Mining medical video content structure and events towards efficient access and scalable skimming. In: DMKD (2002)Google Scholar
  10. 10.
    Vilarino, F., Spyridonos, P., Pujol, O., Vitria, J., Radeva, P.: Automatic detection of intestinal juices in wireless capsule video endoscopy. In: ICPR 2006: Proceedings of the 18th International Conference on Pattern Recognition, Washington, DC, USA, pp. 719–722. IEEE Computer Society, Los Alamitos (2006)CrossRefGoogle Scholar
  11. 11.
    Choupo, A.K., Berti-Équille, L., Morin, A.: Optimizing progressive query-by-example over pre-clustered large image databases. In: CVDB 2005: Proceedings of the 2nd international workshop on Computer vision meets databases, pp. 13–20. ACM, New York (2005)CrossRefGoogle Scholar
  12. 12.
    Arevalillo-Herráez, M., Ferri, F.J., Domingo, J.: A naive relevance feedback model for content-based image retrieval using multiple similarity measures. Pattern Recogn. 43, 619–629 (2010)MATHCrossRefGoogle Scholar
  13. 13.
    Duplaga, M., Juszkiewicz, K., Leszczuk, M., Marek, M., Papir, Z.: Design of Medical Digital Video Library. In: Proc. Fourth International Workshop on Content-Based Multimedia Indexing, CBMI 2005, Latvia, Riga, Content Based Multimedia Indexing (2005)Google Scholar
  14. 14.
    Lee, H.Y., Lee, H.K., Ha, Y.H.: Spatial color descriptor for image retrieval and video segmentation. IEEE Transactions on Multimedia 5, 358–367 (2003)CrossRefGoogle Scholar
  15. 15.
    Leszczuk, M.: Analiza możliwości budowy internetowych aplikacji dostȩpu do cyfrowych bibliotek wideo. PhD Thesis, AGH University of Science and Technology, Faculty of Electrical Engineering, Automatics, Computer Science and Electronics, al. Mickiewicza 30, PL-30059 Kraków, Poland (2005)Google Scholar
  16. 16.
    Duplaga, M., Bułat, J., Leszczuk, M., Socha, M., Turcza, P., Romaniak, P.: Overview of the BRONCHOVID computer system supporting bronchoscopy laboratory — medical and technical perspective. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  17. 17.
    Grega, M., Leszczuk, M., Fra̧czek, R., Duplaga, M.: Algorithms for automatic recognition of non-informative frames in video recordings of bronchoscopic procedures. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  18. 18.
    Jóźwiak, R., Przelaskowski, A., Duplaga, M.: Diagnostically Useful Video Content Extraction for Integrated Computer-Aided Bronchoscopy Examination System. In: Computer Recognition Systems 3. Advances in Soft Computing, vol. 57. Springer, Heidelberg (2009)Google Scholar
  19. 19.
    Johnson, S.B.: Tracheobronchial injury Seminars in Thoracic and Cardiovascular Surgery, vol. 20, pp. 52–57 (2008)Google Scholar
  20. 20.
    Mikrut, Z., Duplaga, M.: Analysis of images of bronchial tree ramifications for summarization of brochoscopic videos. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  21. 21.
    ISO/IEC: Information technology – multimedia content description interface. ISO/IEC 15938 (2002)Google Scholar
  22. 22.
    Janowski, L., Suwada, K.: Fast MPEG-7 image features-based automatic recognition of the lesion in the bronchoscopic recordings. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  23. 23.
    Pawlik, P.: Application of SIFT image analysis method to support of transbronchial needle-aspiration biopsy. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  24. 24.
    Przelaskowski, A., Jóźwiak, R.: Three stage method assisting intrabronchial tumor mass recognition in real bronchoscopy. In: BRONCHOVID: The Computer System for Bronchoscopy Laboratory Integrating the CT-Based Bronchoscopy and Transbronchial Needle-Aspiration Biopsy Planning, Virtual Bronchoscopy, Management of the Bronchoscopic Procedures Recordings, Automatic Image-Based Data Retrieval, Artifact and Pathology Detection and Interactive 2D & 3D Visualization. Springer, Heidelberg (2010)Google Scholar
  25. 25.
    Bradski, G., Kaehler, A.: Learning OpenCV. O’Reilly Media Inc., Sebastopol (2008)Google Scholar
  26. 26.
    Frigo, M., Johnson, S.G.: The design and implementation of FFTW3. Proceedings of the IEEE 93, 216–231 (2005); Special issue on Program Generation, Optimization, and Platform AdaptationCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Mikołaj Leszczuk
    • 1
  • Michał Grega
    • 1
  1. 1.Department of TelecommunicationsAGH University of Science and TechnologyKrakowPoland

Personalised recommendations