Analysis of Major Adverse Cardiac Events with Entropy-Based Complexity

  • Tuan D. Pham
  • Cuong C. To
  • Honghui Wang
  • Xiaobo Zhou
Part of the Advances in Intelligent and Soft Computing book series (AINSC, volume 69)

Abstract

Major adverse cardiac events (MACE) are referred to as unsuspected heart attacks that include death, myocardial infarction and target lesion revascularization. Feature extraction and classification methods for such cardiac events are useful tools that can be applied for biomarker discovery to allow preventive treatment and healthy-life maintenance. In this study we present an entropy-based analysis of the complexity of MACE-related mass spectrometry signals, and an effective model for classifying MACE and control complexity-based features. In particular, the geostatistical entropy is analytically rigorous and can provide better information about the predictability of this type of MACE data than other entropy-based methods for complexity analysis of biosignals. Information on the complexity of this type of time-series data can expand our knowledge about the dynamical behavior of a cardiac model and be useful as a novel feature for early prediction.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ginsburg, G.S., McCarthy, J.J.: Personalized medicine: revolutionizing drug discovery and patient care. Trends in Biotechnology 19, 491–496 (2001)CrossRefGoogle Scholar
  2. 2.
    Yarmush, M.L., Jayaraman, A.: Advances in proteomic technologies. Annu. Rev. Biomed. Eng. 4, 349–373 (2002)CrossRefGoogle Scholar
  3. 3.
    Brennan, M.L., Penn, M.S., Van Lente, F., Nambi, V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic value of myeloperoxidase in patients with chest pain. The New England Journal of Medicine 13, 1595–1604 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhou, X., Wang, H., Wang, J., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Biomarker discovery for risk stratification of cardiovascular events using an improved genetic algorithm. In: Proc. IEEE/NLM Int. Symposium on Life Science and Multimodality, pp. 42–44 (2006)Google Scholar
  5. 5.
    Klauss, V., Erdin, P., Rieber, J., Leibig, M., Stempfle, H.-U., König, A., Baylacher, M., Theisen, K., Haufe, M.C., Sroczynski, G., Schiele, T., Siebert, U.: Fractional flow reserve for the prediction of cardiac events after coronary stent implantation: results of a multivariate analysis. Heart 291, 203–206 (2005)CrossRefGoogle Scholar
  6. 6.
    Pham, T.D., Wang, H., Zhou, X., Beck, D., Brandl, M., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Computational prediction models for early detection of risk of cardiovascular events using mass spectrometry data. IEEE Trans. IT in Biomedicine 12, 636–643 (2008)CrossRefGoogle Scholar
  7. 7.
    Chan, W.S., Luk, C.H., Tse, H.F.: Abstract 3091: Prediction of major adverse cardiac events in patients presenting with chest pain in outpatient clinic by adenosine stress magnetic resonance. Circulation 116, II_693 (2007)CrossRefGoogle Scholar
  8. 8.
    Madan, P., Elayda, M., Lee, V., Wilson, J.: Predicting major adverse cardiac events after percutaneous coronary intervention: The Texas Heart Institute risk score. American Heart Journal 155, 1068–1074 (2008)CrossRefGoogle Scholar
  9. 9.
    Conrads, T.P., Zhou, M., Petricoin III, E.F., Liotta, L., Veenstra, T.D.: Cancer diagnosis using proteomic patterns. Expert Rev. Mol. Diagn. 3, 411–420 (2003)CrossRefGoogle Scholar
  10. 10.
    Tibshirani, R., Hastie, T., Narasimhan, B., Soltys, S., Shi, G., Koong, A., Le Sample, Q.-T.: classification from protein mass spectrometry by peak probability contrasts. Bioinformatics 20, 3034–3044 (2004)CrossRefGoogle Scholar
  11. 11.
    Goldberger, A.L., Peng, C.-K., Lipsitz, L.A.: What is physiologic complexity and how does it change with aging and disease? Neurobiology of Aging 23, 23–26 (2002)CrossRefGoogle Scholar
  12. 12.
    Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99(suppl. 1), 2466–2772 (2002)CrossRefGoogle Scholar
  13. 13.
    Pincus, S.M.: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 88, 2297–2301 (1991)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Richman, J.S., Moorman, J.R.: Physiological time series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol. 278, H2039–H2049 (2000)Google Scholar
  15. 15.
    Chialvo, D.R.: Unhealthy surprises. Nature 419, 263 (2002)CrossRefGoogle Scholar
  16. 16.
    Costa, M., Goldberger, A.L., Peng, C.K.: Multiscale entropy analysis of complex physiologic time series. Phys. Rev. Lett 89, 068102-1–068102-4 (2002)CrossRefGoogle Scholar
  17. 17.
    Lu, S., Chen, X., Kanters, J.K., Solomon, I.C., Chon, K.H.: Automatic selection of the threshold value r for approximate entropy. IEEE Trans. Biomedical Engineering 55, 1966–1972 (2008)CrossRefGoogle Scholar
  18. 18.
    Pham, T.D.: GeoEntropy: a measure of complexity and similarity. Pattern Recognition 43, 887–896 (2010)MATHCrossRefGoogle Scholar
  19. 19.
    Matheron, G.: Estimating and Choosing. Springer, Berlin (1989)MATHGoogle Scholar
  20. 20.
    Isaaks, E.H., Srivastava, R.M.: An Introduction to Applied Geostatistics. Oxford University Press, New York (1989)Google Scholar
  21. 21.
    To, C., Pham, T.D.: Analysis of massive data in biology using hyperplane-based genetic algorithms. Int. J. Trans. Mass-Data Analysis of Images and Signals 1, 76–88 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Tuan D. Pham
    • 1
  • Cuong C. To
    • 1
  • Honghui Wang
    • 2
  • Xiaobo Zhou
    • 3
  1. 1.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia
  2. 2.Clinical CenterNational Institutes of HealthBethesdaUSA
  3. 3.Center for Biotechnology and InformaticsThe Methodist Hospital Research Institute, Weill Cornell Medical CollegeHoustonUSA

Personalised recommendations