Advertisement

Avoidable Binary Patterns in Partial Words

  • Francine Blanchet-Sadri
  • Robert Mercaş
  • Sean Simmons
  • Eric Weissenstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

The problem of classifying all the avoidable binary patterns in words has been completely solved (see Chapter 3 of M. Lothaire, Algebraic Combinatorics on Words, Cambridge University Press, 2002). Partial words represent sequences that may have some undefined positions called holes. In this paper, we show that, if we do not substitute any variable of the pattern by a trivial partial word consisting of only one hole, the avoidability index of the pattern remains the same as in the full word case.

Keywords

Valid Factor Partial Word Binary Alphabet Full Word Avoidable Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bean, D.R., Ehrenfeucht, A., McNulty, G.: Avoidable patterns in strings of symbols. Pacific Journal of Mathematics 85, 261–294 (1979)zbMATHMathSciNetGoogle Scholar
  2. 2.
    Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press (2008)Google Scholar
  3. 3.
    Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for partial words. Theoretical Computer Science 410(8-10), 793–800 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Cassaigne, J.: Unavoidable binary patterns. Acta Informatica 30, 385–395 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial words. Theoretical Computer Science 410(8-10), 943–948 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lothaire, M.: Combinatorics on Words. Cambridge University Press, Cambridge (1997)zbMATHCrossRefGoogle Scholar
  7. 7.
    Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press, Cambridge (2002)zbMATHGoogle Scholar
  8. 8.
    Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Science 389(1-2), 265–277 (2007)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Roth, P.: Every binary pattern of length six is avoidable on the two-letter alphabet. Acta Informatica 29(1), 95–107 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Schmidt, U.: Motifs inévitables dans les mots. Rapport LITP, pp. 86–63, Paris VI (1986)Google Scholar
  11. 11.
    Schmidt, U.: Avoidable patterns on two letters. Theoretical Computer Science 63(1), 1–17 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 7, 1–22 (1906); Nagell, T. (ed.) Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 139–158 (1977)Google Scholar
  13. 13.
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912); Nagell, T. (ed.) Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 413–478 (1977)Google Scholar
  14. 14.
    Zimin, A.I.: Blocking sets of terms. Mathematics of the USSR Sbornik 47, 353–364 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francine Blanchet-Sadri
    • 1
  • Robert Mercaş
    • 2
  • Sean Simmons
    • 3
  • Eric Weissenstein
    • 4
  1. 1.Department of Computer ScienceUniversity of North CarolinaGreensboroUSA
  2. 2.GRLMC, Departament de Filologies RomàniquesUniversitat Rovira i VirgiliTarragonaSpain
  3. 3.Department of MathematicsThe University of Texas at AustinAustinUSA
  4. 4.Department of Mathematical SciencesRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations