Advertisement

Abelian Square-Free Partial Words

  • Francine Blanchet-Sadri
  • Jane I. Kim
  • Robert Mercaş
  • William Severa
  • Sean Simmons
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

Erdös raised the question whether there exist infinite abelian square-free words over a given alphabet (words in which no two adjacent subwords are permutations of each other). Infinite abelian square-free words have been constructed over alphabets of sizes as small as four. In this paper, we investigate the problem of avoiding abelian squares in partial words (sequences that may contain some holes). In particular, we give lower and upper bounds for the number of letters needed to construct infinite abelian square-free partial words with finitely or infinitely many holes. In the case of one hole, we prove that the minimal alphabet size is four, while in the case of more than one hole, we prove that it is five.

Keywords

Alphabet Size Partial Word Binary Alphabet Doklady Akademii Nauk SSSR Full Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berstel, J.: Axel Thue’s work on repetitions in words. In: Leroux, P., Reutenauer, C. (eds.) Invited Lecture at the 4th Conference on Formal Power Series and Algebraic Combinatorics, pp. 65–80 (1992)Google Scholar
  2. 2.
    Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theoretical Computer Science 218, 135–141 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Blanchet-Sadri, F.: Algorithmic Combinatorics on Partial Words. Chapman & Hall/CRC Press (2008)Google Scholar
  4. 4.
    Blanchet-Sadri, F., Mercaş, R., Rashin, A., Willett, E.: An answer to a conjecture on overlaps in partial words using periodicity algorithms. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 188–199. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Blanchet-Sadri, F., Mercaş, R., Scott, G.: A generalization of Thue freeness for partial words. Theoretical Computer Science 410(8-10), 793–800 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Carpi, A.: On the number of abelian square-free words on four letters. Discrete Applied Mathematics 81(1-3), 155–167 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Cummings, L.J., Mays, M.: A one-sided Zimin construction. The Electronic Journal of Combinatorics 8 (2001)Google Scholar
  8. 8.
    Dekking, F.: Strongly non-repetitive sequences and progression-free sets. Journal of Combinatorial Theory 27(2), 181–185 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Erdös, P.: Some unsolved problems. Magyar Tudományos Akadémia Matematikai Kutató Intézete 6, 221–254 (1961)zbMATHGoogle Scholar
  10. 10.
    Evdokimov, A.: Strongly asymmetric sequences generated by a finite number of symbols. Doklady Akademii Nauk SSSR 179, 1268–1271 (1968) (in Russian); English translation in Soviet mathematics - Doklady 9, 536–539 (1968)MathSciNetGoogle Scholar
  11. 11.
    Evdokimov, A.: The existence of a basis that generates 7-valued iteration-free sequences. Diskretnyǐ Analiz 18, 25–30 (1971)zbMATHMathSciNetGoogle Scholar
  12. 12.
    Halava, V., Harju, T., Kärki, T.: Square-free partial words. Information Processing Letters 108(5), 290–292 (2008)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Halava, V., Harju, T., Kärki, T., Séébold, P.: Overlap-freeness in infinite partial words. Theoretical Computer Science 410(8-10), 943–948 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Justin, J.: Characterization of the repetitive commutative semigroups. Journal of Algebra 21, 87–90 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Keränen, V.: Abelian squares are avoidable on 4 letters. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 41–52. Springer, Heidelberg (1992)Google Scholar
  16. 16.
    Keränen, V.: New abelian square-free DT0L-languages over 4 letters. In: Proceedings of the Fifth International Arctic Seminar, Murmansk, Russia. Murmansk State Pedagogical Institute (2002)Google Scholar
  17. 17.
    Keränen, V.: A powerful abelian square-free substitution over 4 letters. Theoretical Computer Science 410(38-40), 3893–3900 (2009)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Korn, M.: Maximal abelian square-free words of short length. Journal of Combinatorial Theory, Series A 102, 207–211 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Manea, F., Mercaş, R.: Freeness of partial words. Theoretical Computer Science 389(1-2), 265–277 (2007)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Pleasants, P.: Non repetitive sequences. Proceedings of the Cambridge Philosophical Society 68, 267–274 (1970)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Thue, A.: Über unendliche Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 7, 1–22 (1906); Nagell, T. (ed.), Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 139–158 (1977)Google Scholar
  22. 22.
    Thue, A.: Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Norske Vid. Selsk. Skr. I, Mat. Nat. Kl. Christiana 1, 1–67 (1912); Nagell, T. (ed.) Reprinted in Selected Mathematical Papers of Axel Thue, Universitetsforlaget, Oslo, Norway, pp. 413–478 (1977)Google Scholar
  23. 23.
    Zimin, A.I.: Blocking sets of terms. Mathematics of the USSR Sbornik 47, 353–364 (1984)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Francine Blanchet-Sadri
    • 1
  • Jane I. Kim
    • 2
  • Robert Mercaş
    • 3
  • William Severa
    • 4
  • Sean Simmons
    • 5
  1. 1.Department of Computer ScienceUniversity of North CarolinaGreensboroUSA
  2. 2.Department of MathematicsColumbia UniversityNew YorkUSA
  3. 3.Harriet L. Wilkes Honors CollegeFlorida Atlantic UniversityJupiterUSA
  4. 4.Departament de Filologies RomàniquesGRLMC, Universitat Rovira i VirgiliTarragonaSpain
  5. 5.Department of MathematicsUniversity of Texas at AustinAustinUSA

Personalised recommendations