Chomsky-Schützenberger-Type Characterization of Multiple Context-Free Languages

  • Ryo Yoshinaka
  • Yuichi Kaji
  • Hiroyuki Seki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)


It is a well-known theorem by Chomsky and Schützenberger (1963) that every context-free language can be represented as a homomorphic image of the intersection of a Dyck language and a regular language. This paper gives a Chomsky-Schützenberger-type characterization for multiple context-free languages, which are a natural extension of context-free languages, with introducing the notion of multiple Dyck languages, which are also a generalization of Dyck languages.


Regular Language Derivation Tree Terminal Symbol Nonterminal Symbol Start Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 118–161. North Holland, Amsterdam (1963)CrossRefGoogle Scholar
  2. 2.
    Engelfriet, J.: Context-free graph grammars. In: Handbook of formal languages, vol. 3, Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Kaji, Y.: Universal recognition problems and a representation theorem using dyck-type languages for multiple context-free grammars. Bachelor’s thesis, Osaka University (1991)Google Scholar
  4. 4.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 205–216. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223(1-2), 87–120 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions 91-D(2), 209–221 (2008)CrossRefGoogle Scholar
  8. 8.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages, vol. 3. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  • Yuichi Kaji
    • 2
  • Hiroyuki Seki
    • 2
  1. 1.Graduate School of Information Science and TechnologyHokkaido University 
  2. 2.Graduate School of Information ScienceNara Institute of Science and Technology 

Personalised recommendations