Chomsky-Schützenberger-Type Characterization of Multiple Context-Free Languages

  • Ryo Yoshinaka
  • Yuichi Kaji
  • Hiroyuki Seki
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6031)

Abstract

It is a well-known theorem by Chomsky and Schützenberger (1963) that every context-free language can be represented as a homomorphic image of the intersection of a Dyck language and a regular language. This paper gives a Chomsky-Schützenberger-type characterization for multiple context-free languages, which are a natural extension of context-free languages, with introducing the notion of multiple Dyck languages, which are also a generalization of Dyck languages.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chomsky, N., Schützenberger, M.P.: The algebraic theory of context-free languages. In: Braffort, P., Hirschberg, D. (eds.) Computer Programming and Formal Systems, pp. 118–161. North Holland, Amsterdam (1963)CrossRefGoogle Scholar
  2. 2.
    Engelfriet, J.: Context-free graph grammars. In: Handbook of formal languages, vol. 3, Springer, Heidelberg (1997)Google Scholar
  3. 3.
    Kaji, Y.: Universal recognition problems and a representation theorem using dyck-type languages for multiple context-free grammars. Bachelor’s thesis, Osaka University (1991)Google Scholar
  4. 4.
    Kanazawa, M.: The pumping lemma for well-nested multiple context-free languages. In: Diekert, V., Nowotka, D. (eds.) Developments in Language Theory. LNCS, vol. 5583, pp. 312–325. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Lautemann, C., Schwentick, T., Thérien, D.: Logics for context-free languages. In: Pacholski, L., Tiuryn, J. (eds.) CSL 1994. LNCS, vol. 933, pp. 205–216. Springer, Heidelberg (1995)CrossRefGoogle Scholar
  6. 6.
    Rambow, O., Satta, G.: Independent parallelism in finite copying parallel rewriting systems. Theoretical Computer Science 223(1-2), 87–120 (1999)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Seki, H., Kato, Y.: On the generative power of multiple context-free grammars and macro grammars. IEICE Transactions 91-D(2), 209–221 (2008)CrossRefGoogle Scholar
  8. 8.
    Seki, H., Matsumura, T., Fujii, M., Kasami, T.: On multiple context-free grammars. Theoretical Computer Science 88(2), 191–229 (1991)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Thomas, W.: Languages, automata, and logic. In: Handbook of formal languages, vol. 3. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Ryo Yoshinaka
    • 1
  • Yuichi Kaji
    • 2
  • Hiroyuki Seki
    • 2
  1. 1.Graduate School of Information Science and TechnologyHokkaido University 
  2. 2.Graduate School of Information ScienceNara Institute of Science and Technology 

Personalised recommendations