Reversible pushdown automata are deterministic pushdown automata having the property that any configuration occurring in any computation has exactly one predecessor. In this paper, the computational capacity of reversible computations in pushdown automata is investigated and turns out to lie properly in between the regular and deterministic context-free languages. Furthermore, it can be shown that a deterministic context-free language cannot be accepted reversibly if more than realtime is necessary for acceptance. Closure properties as well as decidability questions for reversible pushdown automata are studied. Finally, the question of whether a given (nondeterministic) pushdown automaton can be algorithmically tested for reversibility is answered in the affirmative, whereas it is shown to be undecidable whether the language accepted by a given nondeterministic pushdown automaton is reversible.


Turing Machine Regular Language Closure Property Input Symbol Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Angluin, D.: Inference of reversible languages. J. ACM 29, 741–765 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bennet, C.H.: Logical reversibility of computation. IBM J. Res. Dev. 17, 525–532 (1973)CrossRefGoogle Scholar
  3. 3.
    Ginsburg, S., Greibach, S.A.: Deterministic context-free languages. Inform. Control 9, 620–648 (1966)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Harrison, M.A.: Introduction to Formal Language Theory. Addison-Wesley, Reading (1978)zbMATHGoogle Scholar
  5. 5.
    Kutrib, M., Malcher, A.: Fast reversible language recognition using cellular automata. Inform. Comput. 206, 1142–1151 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Kutrib, M., Malcher, A.: Real-time reversible iterative arrays. Theor. Comput. Sci. 411, 812–822 (2010)zbMATHCrossRefGoogle Scholar
  7. 7.
    Morita, K., Shirasaki, A., Gono, Y.: A 1-tape 2-symbol reversible Turing machine. Trans. IEICE E72, 223–228 (1989)Google Scholar
  8. 8.
    Pin, J.E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583, pp. 401–416. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  9. 9.
    Salomaa, A.: Formal Languages. Academic Press, London (1973)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Martin Kutrib
    • 1
  • Andreas Malcher
    • 1
  1. 1.Institut für InformatikUniversität GiessenGiessenGermany

Personalised recommendations