Kernelization for Maximum Leaf Spanning Tree with Positive Vertex Weights

  • Bart Jansen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6078)


In this paper we consider a natural generalization of the well-known Max Leaf Spanning Tree problem. In the generalized Weighted Max Leaf problem we get as input an undirected connected graph G = (V,E), a rational number k ≥ 1 and a weight function \(w: V \longmapsto Q_{\geq 1}\) on the vertices, and are asked whether a spanning tree T for G exists such that the combined weight of the leaves of T is at least k. We show that it is possible to transform an instance 〈G,w, k 〉 of Weighted Max Leaf in linear time into an equivalent instance 〈G′,w′, k′ 〉 such that |V′| ≤ 5.5k′ and k′ ≤ k. In the context of fixed parameter complexity this means that Weighted Max Leaf admits a kernel with 5.5k vertices. The analysis of the kernel size is based on a new extremal result which shows that every graph G that excludes some simple substructures always contains a spanning tree with at least |V|/5.5 leaves.


Span Tree Vertex Cover Reduction Rule Leaf Weight Dead Leaf 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Böcker, S., Briesemeister, S., Bui, Q.B., Truss, A.: A fixed-parameter approach for weighted cluster editing. In: Series on Advances in Bioinformatics and Computational Biology, vol. 5, pp. 211–220. Imperial College Press, London (2008)Google Scholar
  2. 2.
    Bodlaender, H.L.: Kernelization: New upper and lower bound techniques. In: Proc. 4th IWPEC, pp. 17–37 (2009)Google Scholar
  3. 3.
    Bonsma, P.S., Zickfeld, F.: Spanning trees with many leaves in graphs without diamonds and blossoms. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 531–543. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Crescenzi, P., Silvestri, R., Trevisan, L.: On weighted vs unweighted versions of combinatorial optimization problems. Inf. Comput. 167(1), 10–26 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Proc. 4th IWPEC, pp. 86–97 (2009)Google Scholar
  6. 6.
    Estivill-Castro, V., Fellows, M., Langston, M., Rosamond, F.: FPT is P-time extremal structure I. In: Proc. 1st ACiD, pp. 1–41 (2005)Google Scholar
  7. 7.
    Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. In: Proc. 4th IWPEC, pp. 161–172 (2009)Google Scholar
  8. 8.
    Flum, J., Grohe, M.: Parameterized Complexity Theory (Texts in Theoretical Computer Science). An EATCS Series. Springer, New York (2006)zbMATHGoogle Scholar
  9. 9.
    Fujito, T., Nagamochi, H.: A 2-approximation algorithm for the minimum weight edge dominating set problem. Discrete Appl. Math. 118(3), 199–207 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Griggs, J.R., Kleitman, D., Shastri, A.: Spanning trees with many leaves in cubic graphs. J. Graph Theory 13, 669–695 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. SIGACT News 38(1), 31–45 (2007)CrossRefGoogle Scholar
  12. 12.
    Jansen, B.: Kernelization for maximum leaf spanning tree with positive vertex weights. Technical Report UU-CS-2009-027, Department of Information and Computing Sciences, Utrecht University (2009),
  13. 13.
    Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discret. Math. 4(1), 99–106 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kneis, J., Langer, A., Rossmanith, P.: A new algorithm for finding trees with many leaves. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 270–281. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Kratsch, S.: Polynomial kernelizations for MIN \(F^+ \Pi_1\) and MAX NP. In: Albers, S., Marion, J.-Y. (eds.) 26th STACS, Leibniz-Zentrum fuer Informatik (March 2009)Google Scholar
  16. 16.
    Niedermeier, R., Rossmanith, P.: On efficient fixed-parameter algorithms for weighted vertex cover. J. Algorithms 47(2), 63–77 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Raible, D., Fernau, H.: An amortized search tree analysis for k-leaf spanning tree. In: Proc. 36th SOFSEM, pp. 672–684 (2010)Google Scholar
  18. 18.
    Solis-oba, R.: 2-approximation algorithm for finding a spanning tree with the maximum number of leaves. In: Bilardi, G., Pietracaprina, A., Italiano, G.F., Pucci, G. (eds.) ESA 1998. LNCS, vol. 1461, pp. 441–452. Springer, Heidelberg (1998)Google Scholar
  19. 19.
    Storer, J.A.: Constructing full spanning trees for cubic graphs. Information Processing Letters 13(1), 8–11 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Zimand, M.: Weighted NP optimization problems: Logical definability and approximation properties. SIAM J. Comput. 28(1), 36–56 (1999)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bart Jansen
    • 1
  1. 1.Utrecht UniversityUtrechtThe Netherlands

Personalised recommendations