The Steiner Tree Reoptimization Problem with Sharpened Triangle Inequality

(Extended Abstract)
  • Hans-Joachim Böckenhauer
  • Karin Freiermuth
  • Juraj Hromkovič
  • Tobias Mömke
  • Andreas Sprock
  • Björn Steffen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6078)


In this paper, we deal with several reoptimization variants of the Steiner tree problem in graphs obeying a sharpened β-triangle inequality. A reoptimization algorithm exploits the knowledge of an optimal solution to a problem instance for finding good solutions for a locally modified instance. We show that, in graphs satisfying a sharpened triangle inequality (and even in graphs where edge-costs are restricted to the values 1 and 1 + γ for an arbitrary small γ> 0), Steiner tree reoptimization still is NP-hard for several different types of local modifications, and even APX-hard for some of them.

As for the upper bounds, for some local modifications, we design linear-time (1/2 + β)-approximation algorithms, and even polynomial-time approximation schemes, whereas for metric graphs (β= 1), none of these reoptimization variants is known to permit a PTAS. As a building block for some of these algorithms, we employ a 2β-approximation algorithm for the classical Steiner tree problem on such instances, which might be of independent interest since it improves over the previously best known ratio for any β < 1/2 + ln (3)/4 ≈ 0.775.


Minimum Span Tree Steiner Tree Steiner Tree Problem Terminal Vertex Edge Cost 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the 0-1 knapsack problem. Tech. Rep. 267, University of Brescia (2006)Google Scholar
  3. 3.
    Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R.V. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Bern, M.W., Plassmann, P.E.: The Steiner problem with edge lengths 1 and 2. Inf. Process. Lett. 32(4), 171–176 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bilò, D., Böckenhauer, H.J., Hromkovič, J., Královič, R., Mömke, T., Widmayer, P., Zych, A.: Reoptimization of Steiner trees. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 258–269. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Bilò, D., Böckenhauer, H.J., Komm, D., Královič, R., Mömke, T., Seibert, S., Zych, A.: Reoptimization of the shortest common superstring problem. In: Kucherov, G., Ukkonen, E. (eds.) CPM 2009. LNCS, vol. 5577, pp. 78–91. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bilò, D., Widmayer, P., Zych, A.: Reoptimization of weighted graph and covering problems. In: Bampis, E., Skutella, M. (eds.) WAOA 2008. LNCS, vol. 5426, pp. 201–213. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Böckenhauer, H.J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: Reusing optimal TSP solutions for locally modified input instances (extended abstract). In: Navarro, G., Bertossi, L.E., Kohayakawa, Y. (eds.) Proc. of the 4th IFIP International Conference on Theoretical Computer Science (TCS 2006). IFIP., vol. 209, pp. 251–270. Springer, New York (2006)CrossRefGoogle Scholar
  9. 9.
    Böckenhauer, H.J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Approximation algorithms for TSP with sharpened triangle inequality. Inf. Process. Lett. 75, 133–138 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Böckenhauer, H.J., Hromkovič, J., Královič, R., Mömke, T., Rossmanith, P.: Reoptimization of Steiner trees: Changing the terminal set. Theor. Comput. Sci. 410(36), 3428–3435 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Böckenhauer, H.J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Böckenhauer, H.J., Komm, D.: Reoptimization of the metric deadline TSP. In: Ochmański, E., Tyszkiewicz, J. (eds.) MFCS 2008. LNCS, vol. 5162, pp. 156–167. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Escoffier, B., Milanič, M., Paschos, V.T.: Simple and fast reoptimizations for the Steiner tree problem. Algorithmic Oper. Res. 4(2), 86–94 (2009)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652 (1998)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Halldórsson, M.M., Ueno, S., Nakao, H., Kajitani, Y.: Approximating Steiner trees in graphs with restricted weights. Networks 31(4), 283–292 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hwang, F.K., Richards, D.S., Winter, P.: The Steiner Tree Problems. In: Annals of Discrete Mathematics, vol. 53. North-Holland, Amsterdam (1992)Google Scholar
  17. 17.
    Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of computer computations, pp. 85–103. Plenum, New York (1972)CrossRefGoogle Scholar
  18. 18.
    Prömel, H.J., Steger, A.: The Steiner Tree Problem. In: Advanced Lectures in Mathematics, Friedr. Vieweg & Sohn, Braunschweig (2002)Google Scholar
  19. 19.
    Robins, G., Zelikovsky, A.Z.: Improved Steiner tree approximation in graphs. In: Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2000), pp. 770–779. ACM/SIAM, New York (2000)Google Scholar
  20. 20.
    Schäffter, M.W.: Scheduling with forbidden sets. Discrete Appl. Math. 72(1-2), 155–166 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Hans-Joachim Böckenhauer
    • 1
  • Karin Freiermuth
    • 1
  • Juraj Hromkovič
    • 1
  • Tobias Mömke
    • 1
  • Andreas Sprock
    • 1
  • Björn Steffen
    • 1
  1. 1.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations