Advertisement

Strategic Coloring of a Graph

  • Bruno Escoffier
  • Laurent Gourvès
  • Jérôme Monnot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6078)

Abstract

We study a strategic game where every node of a graph is owned by a player who has to choose a color. A player’s payoff is 0 if at least one neighbor selected the same color, otherwise it is the number of players who selected the same color. The social cost of a state is defined as the number of distinct colors that the players use. It is ideally equal to the chromatic number of the graph but it can substantially deviate because every player cares about his own payoff, whatever how bad the social cost is. Following a previous work done by Panagopoulou and Spirakis [1] on the Nash equilibria of the coloring game, we give worst case bounds on the social cost of stable states. Our main contribution is an improved (tight) bound for the worst case social cost of a Nash equilibrium, and the study of strong equilibria, their existence and how far they are from social optima.

Keywords

Nash Equilibrium Bipartite Graph Social Cost Chromatic Number Simple Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Panagopoulou, P.N., Spirakis, P.G.: A game theoretic approach for efficient graph coloring. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 183–195. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Aumann, R.J.: Acceptable points in games of perfect information. Pacific Journal of Mathematics 10, 381–417 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Krarup, J., de Werra, D.: Chromatic optimisation: Limitations, objectives, uses, references (invited review). European Journal of Operational Research 11, 1–19 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    de Werra, D., Gay, Y.: Chromatic scheduling and frequency assignment. Discrete Applied Mathematics 49, 165–174 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bodlaender, H.L.: On the complexity of some coloring games. International Journal of Foundations of Computer Science 2, 133–147 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chaudhuri, K., Chung, F., Jamall, M.S.: A network coloring game. In: Papadimitriou, C., Zhang, S. (eds.) WINE 2008. LNCS, vol. 5385, pp. 522–530. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Kearns, M., Suri, S., Montfort, N.: An experimental study of the coloring problem on human subject networks. Science 313, 824–827 (2006)CrossRefGoogle Scholar
  8. 8.
    Crescenzi, P., Deng, X., Papadimitriou, C.H.: On approximating a scheduling problem. Journal of Combinatorial Optimization 5(3), 287–297 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Afrati, F.N., Aslanidis, T., Bampis, E., Milis, I.: Scheduling in switching networks with set-up delays. Journal of Combinatorial Optimization 9, 49–57 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Erlebach, T., Jansen, K.: Maximizing the number of connections in optical tree networks. In: Chwa, K.-Y., Ibarra, O.H. (eds.) ISAAC 1998. LNCS, vol. 1533, pp. 179–188. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  11. 11.
    Bampas, E., Pagourtzis, A., Pierrakos, G., Syrgkanis, V.: Colored resource allocation games. In: Proc. of the 8th Cologne-Twente Workshop on Graphs and Combinatorial Optimization, pp. 68–72 (2009)Google Scholar
  12. 12.
    Koutsoupias, E., Papadimitriou, C.: Worst case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404–413. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  13. 13.
    Roughgarden, T., Tardos, É.: How bad is selfish routing? J. ACM 49, 236–259 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Berge, C.: Graphs and hypergraphs. North Holland, Amsterdam (1973)zbMATHGoogle Scholar
  15. 15.
    Andelman, N., Feldman, M., Mansour, Y.: Strong price of anarchy. Games and Economic Behavior 65, 289–317 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Bruno Escoffier
    • 1
    • 2
  • Laurent Gourvès
    • 1
    • 2
  • Jérôme Monnot
    • 1
    • 2
  1. 1.CNRS, FRE 3234ParisFrance
  2. 2.Université de Paris-Dauphine, LAMSADEParisFrance

Personalised recommendations