A Parameterized Algorithm for Chordal Sandwich

  • Pinar Heggernes
  • Federico Mancini
  • Jesper Nederlof
  • Yngve Villanger
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6078)


Given an arbitrary graph G = (V,E) and an additional set of admissible edges F, the Chordal Sandwich problem asks whether there exists a chordal graph (V,E ∪ F′) such that F′ ⊆ F. This problem arises from perfect phylogeny in evolution and from sparse matrix computations in numerical analysis, and it generalizes the widely studied problems of completions and deletions of arbitrary graphs into chordal graphs. As many related problems, Chordal Sandwich is NP-complete. In this paper we show that the problem becomes tractable when parameterized with a suitable natural measure on the set of admissible edges F. In particular, we give an algorithm with running time \(\mathcal{O}(2^{k}n^{5})\) to solve this problem, where k is the size of a minimum vertex cover of the graph (V, F). Hence we show that the problem is fixed parameter tractable when parameterized by k. Note that the parameter does not assume any restriction on the input graph, and it concerns only the additional edge set F.


Vertex Cover Maximal Clique Input Graph Tree Decomposition Chordal Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bodlaender, H.L., Fellows, M.R., Warnow, T.: Two strikes against perfect phylogeny. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 273–283. Springer, Heidelberg (1992)CrossRefGoogle Scholar
  2. 2.
    Bodlaender, H.L., Fellows, M.R., Hallett, M.T., Wareham, T., Warnow, T.: The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs. Theor. Comput. Sci. 244(1-2), 167–188 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bodlaender, H.L., Heggernes, P., Villanger, Y.: Faster parameterized algorithms for Minimum Fill-In. In: Hong, S.-H., Nagamochi, H., Fukunaga, T. (eds.) ISAAC 2008. LNCS, vol. 5369, pp. 282–293. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On Problems without Polynomial Kernels (Extended Abstract). In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS, vol. 5125, pp. 563–574. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bouchitté, V., Todinca, I.: Treewidth and minimum fill-in: Grouping the minimal separators. SIAM Journal on Computing 31, 212–232 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Buneman, P.: A characterization of rigid circuit graphs. Disc. Math. 9, 205–212 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Inf. Process. Lett. 58, 171–176 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cerioli, M.R., Everett, H., de Figueiredo, C.M.H., Klein, S.: The homogeneous set sandwich problem. Inf. Process. Lett. 67(1), 31–35 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dirac, G.A.: On rigid circuit graphs. Anh. Math. Sem. Univ. Hamburg 25, 71–76 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Parameterized complexity. Monographs in Computer Science. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fernau, H., Fomin, F., Lokshtanov, D., Raible, D., Saurabh, S., Villanger, Y.: Kernel(s) for Problems With no Kernel: On Out-Trees With Many Leaves. In: STACS 2009, Dagstuhl Seminar Proceedings, vol. 09001, pp. 421–432 (2009)Google Scholar
  12. 12.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  13. 13.
    Fomin, F.V., Kratsch, D., Todinca, I., Villanger, Y.: Exact algorithms for treewidth and minimum fill-in. SIAM J. Computing 38, 1058–1079 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Fomin, F.V., Villanger, Y.: Finding Induced Subgraphs via Minimal Triangulations. In: STACS 2010. INRIA 00455360-1, pp. 383–394 (2010)Google Scholar
  15. 15.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, Annals of Discrete Mathematics, 2nd edn., vol. 57. Elsevier, Amsterdam (2004)Google Scholar
  16. 16.
    Golumbic, M.C., Kaplan, H., Shamir, R.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Golumbic, M.C., Wassermann, A.: Complexity and algorithms for graph and hypergraph sandwich problems. Graphs and Combinatorics 14, 223–239 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Habib, M., Kelly, D., Lebhar, E., Paul, C.: Can transitive orientation make sandwich problems easier? Disc. Math. 307(16), 2030–2041 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Heggernes, P.: Minimal triangulations of graphs: A survey. Disc. Math. 306, 297–317 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Heggernes, P., Telle, J.A., Villanger, Y.: Computing Minimal Triangulations in Time O(n αlogn) = o(n 2.376). In: SODA 2005, pp. 907–916 (2005)Google Scholar
  21. 21.
    de Figueiredo, C.M.H., Faria, L., Klein, S., Sritharan, R.: On the complexity of the sandwich problems for strongly chordal graphs and chordal bipartite graphs. Theor. Comput. Sci. 381(1-3), 57–67 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    de Figueiredo, C.M.H., Klein, S., Vuskovic, K.: The graph sandwich problem for 1-join composition is NP-complete. Disc. Appl. Math. 121(1-3), 73–82 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal and interval graphs: Minimum fill-in and physical mapping. In: FOCS 1994, pp. 780–791 (1994)Google Scholar
  24. 24.
    Kaplan, H., Shamir, R., Tarjan, R.E.: Tractability of parameterized completion problems on chordal, strongly chordal, and proper interval graphs. SIAM J. Computing 28, 1906–1922 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Lokshtanov, D.: On the Complexity of Computing Treelength. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS, vol. 4708, pp. 276–287. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  26. 26.
    Marx, D.: Chordal Deletion Is Fixed-Parameter Tractable. Algorithmica (to appear)Google Scholar
  27. 27.
    Natanzon, A., Shamir, R., Sharan, R.: A polynomial approximation algorithm for the minimum fill-in problem. SIAM J. Computing 30, 1067–1079 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  29. 29.
    Parra, A., Scheffler, P.: Characterizations and algorithmic applications of chordal graph embeddings. Disc. Appl. Math. 79, 171–188 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5, 266–283 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Schaefer, M.: The graph sandwich problem for a coNP property. Tech. Report TR 06-011, DePaul University (2006)Google Scholar
  32. 32.
    Steel, M.: The complexity of reconstructing trees from qualitative characters and subtrees. J. of Classification 9, 91–116 (1992)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Pinar Heggernes
    • 1
  • Federico Mancini
    • 1
  • Jesper Nederlof
    • 1
  • Yngve Villanger
    • 1
  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations