Advertisement

Popular Matchings in the Marriage and Roommates Problems

  • Péter Biró
  • Robert W. Irving
  • David F. Manlove
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6078)

Abstract

Popular matchings have recently been a subject of study in the context of the so-called House Allocation Problem, where the objective is to match applicants to houses over which the applicants have preferences. A matching M is called popular if there is no other matching M′ with the property that more applicants prefer their allocation in M′ to their allocation in M. In this paper we study popular matchings in the context of the Roommates Problem, including its special (bipartite) case, the Marriage Problem. We investigate the relationship between popularity and stability, and describe efficient algorithms to test a matching for popularity in these settings. We also show that, when ties are permitted in the preferences, it is NP-hard to determine whether a popular matching exists in both the Roommates and Marriage cases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM Journal on Computing 37, 1030–1045 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Abraham, D.J., Kavitha, T.: Dynamic matching markets and voting paths. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 65–76. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Biró, P., Irving, R.W., Manlove, D.F.: Popular matchings in the Marriage and Roommates problems. Technical Report TR-2009-306, University of Glasgow, Department of Computing Science (December 2009)Google Scholar
  4. 4.
    Chen, L.: An optimal utility value method with majority equilibrium for public facility allocation. Pacific Journal of Optimization 3(2), 227–234 (2007)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Gabow, H.N.: An efficient implementations of Edmonds’ algorithm for maximum matching on graphs. Journal of the ACM 23(2), 221–234 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Gabow, H.N., Kaplan, H., Tarjan, R.E.: Unique maximum matching algorithms. Journal of Algorithms 40, 159–183 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint set union. Journal of Computer and System Sciences 30, 209–221 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Gabow, H.N., Tarjan, R.E.: Faster scaling algorithms for general graph-matching problems. Journal of the ACM 38(4), 815–853 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. American Mathematical Monthly 69, 9–15 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Applied Mathematics 11, 223–232 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behavioural Science 20, 166–173 (1975)CrossRefGoogle Scholar
  12. 12.
    Goldberg, A.V.: Scaling algorithms for the shortest paths problem. SIAM Journal on Computing 24(3), 494–504 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989)zbMATHGoogle Scholar
  14. 14.
    Huang, C.-C., Kavitha, T., Michail, D., Nasre, M.: Bounded unpopularity matchings. In: Gudmundsson, J. (ed.) SWAT 2008. LNCS, vol. 5124, pp. 127–137. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  15. 15.
    Irving, R.W.: An efficient algorithm for the “stable roommates” problem. Journal of Algorithms 6, 577–595 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Iwama, K., Manlove, D., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 443–452. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  17. 17.
    Mahdian, M.: Random popular matchings. In: Proceedings of EC 2006: the 7th ACM Conference on Electronic Commerce, pp. 238–242. ACM, New York (2006)Google Scholar
  18. 18.
    Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theoretical Computer Science 276(1-2), 261–279 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Manlove, D.F., Sng, C.T.S.: Popular matchings in the Capacitated House Allocation problem. In: Azar, Y., Erlebach, T. (eds.) ESA 2006. LNCS, vol. 4168, pp. 492–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  20. 20.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Laber, E.S., Bornstein, C., Nogueira, L.T., Faria, L. (eds.) LATIN 2008. LNCS, vol. 4957, pp. 593–604. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  21. 21.
    McDermid, E., Irving, R.W.: Popular matchings: Structure and algorithms. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 506–515. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  22. 22.
    Mestre, J.: Weighted popular matchings. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 715–726. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    O’Malley, G.: Algorithmic Aspects of Stable Matching Problems. PhD thesis, University of Glasgow, Department of Computing Science (2007)Google Scholar
  24. 24.
    Ronn, E.: NP-complete stable matching problems. Journal of Algorithms 11, 285–304 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Roth, A.E., Sotomayor, M.A.O.: Two-sided matching: a study in game-theoretic modeling and analysis. Econometric Society Monographs, vol. 18. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  26. 26.
    Sng, C.T.S.: Efficient Algorithms for Bipartite Matching Problems with Preferences. PhD thesis, University of Glasgow, Department of Computing Science (2008)Google Scholar
  27. 27.
    Sng, C.T.S., Manlove, D.F.: Popular matchings in the weighted capacitated house allocation problem. Journal of Discrete Algorithms 8, 102–116 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Péter Biró
    • 1
  • Robert W. Irving
    • 1
  • David F. Manlove
    • 1
  1. 1.Department of Computing ScienceUniversity of GlasgowGlasgowUK

Personalised recommendations