Advertisement

A Computer Approach for Face Aging Problems

  • Khoa Luu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6085)

Abstract

This paper first presents a novel age-estimation approach combining Active Appearance Models (AAMs) and Support Vector Regression (SVR) to yield the highest accuracy of age recognition rates of all comparable published results both in overall Mean Absolute Error (MAE) and Mean Absolute Error per decade of life (MAEd). The combination of AAMs and AVR is used again for a newly proposed face age-progression method. The familial information of siblings is also collected so that the system can predict the future faces of an individual based on parental and sibling facial traits. Especially, a new longitudinal familial face database is presented. Compared to other databases, this database is unique in that it contains family-based longitudinal images. It contains not only frontal faces but also the corresponding profiles. It has the largest number of pre-adult face images per subject on average.

Keywords

Face aging age-estimation age-progression active appearance models support vector regression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yan, S., Zhou, X., Liu, M., Johnson, M., Huang, T.: Regression from Patch-Kernel. In: ICPR 2008 (2008)Google Scholar
  2. 2.
    Luu, K.: A Computer Vision Approach for Face Aging Problems, Master Thesis of Computer Science, CENPARMI, Concordia University, Montreal, Canada (2009)Google Scholar
  3. 3.
    Luu, K., Bui, T.D., Ricanek Jr., K., Suen, C.Y.: Age Estimation using Active Appearance Models and Support Vector Machine Regression. BTAS Washington, DC, U.S. (September 2009)Google Scholar
  4. 4.
    Luu, K., Suen, C.Y., Bui, T.D., Ricanek Jr., K.: Automatic Child-Face Age-Progression Based on Heritability Factors of Familial Faces. BiDS, Florida, U.S. (September 2009)Google Scholar
  5. 5.
    Luu, K., Ricanek, K., Bui, T.D., Suen, C.Y.: The Familial Face Database: A Longitudinal Study of Family-based Growth and Development on Face Recognition. In: ROBUST 2008 (2008)Google Scholar
  6. 6.
    Lanitis, A., Taylor, C., Cootes, T.: Modeling the process of ageing in face images. In: ICCV 1999 (1999)Google Scholar
  7. 7.
    Pitanguy, I., Pamplona, D., Weber, H., Leta, F., Salgado, F., Radwanski, H.: Numerical modeling of facial aging. Plastic and Reconstructive Surgery 102, 200–204 (1998)CrossRefGoogle Scholar
  8. 8.
    Suo, J., Min, F., Zhu, S., Shan, S.G., Chen, X.: A Multi-Resolution Dynamic Model for Face Aging Simulation. In: CVPR 2007 (2007)Google Scholar
  9. 9.
    Scherbaum, K., Sunkel, M., Seidel, H.P., Blanz, V.: Prediction of Individual Non-Linear Aging Trajectories of Faces. In: 2007 (2007)Google Scholar
  10. 10.
    Ricanek, K., Tesafaye, T.: MORPH: A longitudinal Image Database of Normal Adult Age-Progression. In: FG 2006 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Khoa Luu
    • 1
  1. 1.Centre for Pattern Recognition and Machine Intelligence, Department of Computer Science and Software EngineeringConcordia UniversityCanada

Personalised recommendations