We introduce the framework of branched polyhedral systems that can be used in order to construct extended formulations for polyhedra by combining extended formulations for other polyhedra. The framework, for instance, simultaneously generalizes extended formulations like the well-known ones (see Balas [1]) for the convex hulls of unions of polyhedra (disjunctive programming) and like those obtained from dynamic programming algorithms for combinatorial optimization problems (due to Martin, Rardin, and Campbell [11]). Using the framework, we construct extended formulations for full orbitopes (the convex hulls of all 0/1-matrices with lexicographically sorted columns), we show for two special matching problems, how branched polyhedral systems can be exploited in order to construct formulations for certain nested combinatorial problems, and we indicate how one can build extended formulations for stable set polytopes using the framework of branched polyhedral systems.


Convex Hull Source Node Extended Formulation Dynamic Programming Algorithm Admissable Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Balas, E.: Disjunctive programming and a hierarchy of relaxations for discrete optimization problems. SIAM J. Algebraic Discrete Methods 6(3), 466–486 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Extended Formulations in Combinatorial Optimization. Technical Report (2009)Google Scholar
  3. 3.
    Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. In: Jünger, M., Liebling, T., Naddef, D., Nemhauser, G., Pulleyblank, W., Reinelt, G., Rinaldi, G., Wolsey, L. (eds.) 50 Years of Integer Programming 1958-2008. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Conforti, M., Di Summa, M., Eisenbrand, F., Wolsey, L.: Network formulations of mixed-integer programs. Math. Oper. Res. 34, 194–209 (2009)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Edmonds, J.: Maximum matching and a polyhedron with 0,1 vertices. Journal of Research of the National Bureau of Standards 69B, 125–130 (1965)MathSciNetGoogle Scholar
  6. 6.
    Faenza, Y., Kaibel, V.: Extended formulations for packing and partitioning orbitopes. Math. Oper. Res. 34(3), 686–697 (2009)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Faenza, Y., Oriolo, G., Stauffer, G.: The hidden matching structure of the composition of strips: a polyhedral perspective. In: 14th Aussois Workshop on Combinatorial Optimization, Aussois (January 2010)Google Scholar
  8. 8.
    Kaibel, V., Pashkovich, K., Theis, D.O.: Symmetry matters for the sizes of extended formulations. In: Eisenbrand, F., Shepherd, B. (eds.) IPCO 2010. LNCS, vol. 6080, pp. 135–148. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Kaibel, V., Pfetsch, M.: Packing and partitioning orbitopes. Math. Program. 114(1, Ser. A), 1–36 (2008)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Margot, F.: Composition de Polytopes Combinatoires: Une Approche par Projection. Ph.D. thesis, École Polytechnique Fédérale de Lausanne (1994)Google Scholar
  11. 11.
    Martin, R.K., Rardin, R.L., Campbell, B.A.: Polyhedral characterization of discrete dynamic programming. Oper. Res. 38(1), 127–138 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Schaffers, M.: On Links Between Graphs with Bounded Decomposability, Existence of Efficient Algorithms, and Existence of Polyhedral Characterizations. Ph.D. thesis, Université Catholique de Louvain (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Volker Kaibel
    • 1
  • Andreas Loos
    • 1
  1. 1.Institut für Mathematische OptimierungOtto-von-Guericke-Universität MagdeburgMagdeburgGermany

Personalised recommendations