Advertisement

Modelling of Heat Flux in Building Using Soft-Computing Techniques

  • Javier Sedano
  • José Ramón Villar
  • Leticia Curiel
  • Enrique de la Cal
  • Emilio Corchado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6098)

Abstract

Improving the detection of thermal insulation failures in buildings includes the development of models for heating process and fabric gain -heat flux through exterior walls in the building-. Thermal insulation standards are now contractual obligations in new buildings, the energy efficiency in the case of buildings constructed before the regulations adopted is still an open issue, and the assumption is that it will be based on heat flux and conductivity measurement. A three-step procedure is proposed in this study that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modeled. Secondly, an exploratory projection pursuit method called Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, a supervised neural model and identification techniques are applied, in order to detect the heat flux through exterior walls in the building. The reliability of the proposed method is validated for a winter zone, associated to several cities in Spain.

Keywords

Computational Intelligence Soft computing Systems Identification Systems Artificial Neural Networks Non-linear Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Villar, J.R., de la Cal, E., Sedano, J.: Minimizing energy consumption in heating systems under uncertainty. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) HAIS 2008. LNCS (LNAI), vol. 5271, pp. 583–590. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    de la Cal, E., Villar, J.R., Sedano, J.: A thermodynamical model study for an energy saving algorithm. In: Corchado, E., Wu, X., Oja, E., Herrero, Á., Baruque, B. (eds.) HAIS 2009. LNCS (LNAI), vol. 5572, pp. 384–390. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Lewis, P.T., Alexander, P.K.: A flexible model for dynamic building simulation: HTB2. Building and Environment 1, 7–16 (1990)CrossRefGoogle Scholar
  4. 4.
    Freedman, J.H., Tukey, J.W.: Projection pursuit algorithm for exploratory data-analysis. IEEE Transactions on Computers 23(9), 881–890 (1974)CrossRefGoogle Scholar
  5. 5.
    Corchado, E., MacDonald, D., Fyfe, C.: Maximum and minimum likelihood Hebbian Learning for Exploratory Projection Pursuit. Data Mining and Knowledge Discovery 8(3), 203–225 (2004)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Corchado, E., Fyfe, C.: Connectionist techniques for the identification and suppression of interfering underlying factors. International Journal of Pattern Recognition and Artificial Intelligence 17(8), 1447–1466 (2003)CrossRefGoogle Scholar
  7. 7.
    Corchado, E., Fyfe, C.: Orientation selection using Maximum Likelihood Hebbian learning. International Journal of Knowledge-Based Intelligent Engineering 7(2) (2003)Google Scholar
  8. 8.
    Directive 2002/91/CE of the European Parliament and the Council of 16 December 2002 on the energy performance of buildings. Official Journal of the European Community (2003)Google Scholar
  9. 9.
    Real Decreto 314/2006, de 17 de Marzo. BOE núm 74, Reino de España (2006)Google Scholar
  10. 10.
    Pearson, K.: On lines and planes of closest fit to systems of points in space. Philosophical Magazine 2(6), 559–572 (1901)Google Scholar
  11. 11.
    Hotelling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417–444 (1933)CrossRefGoogle Scholar
  12. 12.
    Seung, H.S., Socci, N.D., Lee, D.: The rectified Gaussian distribution. Advances in Neural Information Processing Systems 10, 350–356 (1998)Google Scholar
  13. 13.
    Fyfe, C., Corchado, E.: Maximum likelihood Hebbian rules. In: Proceedings of the 10th European Symposium on Artificial Neural Networks (ESANN 2002), pp. 143–148. D-side Publishers, Bruges (2002)Google Scholar
  14. 14.
    Corchado, E., Han, Y., Fyfe, C.: Structuring global responses of local filters using lateral connections. Journal of Experimental & Theoretical Artificial Intelligence 15(4), 473–487 (2003)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ljung, L.: System Identification. Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999)Google Scholar
  16. 16.
    Akaike, H.: Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 20, 425–439 (1969)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Bekiros, S.D., Georgoutsos, D.A.: Evaluating direction-of-change forecasting: Neurofuzzy models versus neural networks. Mathematical and Computer Modelling 46, 38–46 (2007)CrossRefGoogle Scholar
  18. 18.
    Nørgaard. M.: Neural network based system identification toolbox. Technical Report 00-E-891, Dept. of Automation, Technical University of Denmark (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Javier Sedano
    • 1
  • José Ramón Villar
    • 2
  • Leticia Curiel
    • 3
  • Enrique de la Cal
    • 2
  • Emilio Corchado
    • 4
  1. 1.Department of Electromechanical EngineeringUniversity of BurgosBurgosSpain
  2. 2.Department of Computer ScienceUniversity of OviedoSpain
  3. 3.Department of Civil EngineeringUniversity of BurgosBurgosSpain
  4. 4.Department of Computer Science and AutomationUniversity of SalamancaSalamancaSpain

Personalised recommendations