Synergies between Network-Based Representation and Probabilistic Graphical Models for Classification, Inference and Optimization Problems in Neuroscience

  • Roberto Santana
  • Concha Bielza
  • Pedro Larrañaga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6098)


Neural systems network-based representations are useful tools to analyze numerous phenomena in neuroscience. Probabilistic graphical models (PGMs) give a concise and still rich representation of complex systems from different domains, including neural systems. In this paper we analyze the characteristics of a bidirectional relationship between networks-based representations and PGMs. We show the way in which this relationship can be exploited introducing a number of methods for the solution of classification, inference and optimization problems. To illustrate the applicability of the introduced methods, a number of problems from the field of neuroscience, in which ongoing research is conducted, are used.


Betweenness Centrality Probabilistic Graphical Model Abductive Inference High Betweenness Centrality Network Descriptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeles, M.: Local Cortical Circuits: An Electrophysiological Study. Springer, Heidelberg (1982)Google Scholar
  2. 2.
    Amaral, L.A.N., Scala, A., Barthélémy, M., Stanley, H.E.: Classes of small-world networks. Proceedings of the National Academy of Sciences (PNAS) 97(21), 11149–11152 (2000)CrossRefGoogle Scholar
  3. 3.
    Bassett, D.S., Bullmore, E., Verchinski, B.A., Mattay, V.S., Weinberger, D.R., Meyer-Lindenberg, A.: Hierarchical organization of human cortical networks in health and schizophrenia. Journal of Neuroscience 28(37), 9239–9248 (2008)CrossRefGoogle Scholar
  4. 4.
    Brandes, U.: A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001)MATHCrossRefGoogle Scholar
  5. 5.
    Brown, E.N., Kass, R.E., Mitra, P.P.: Multiple neural spike train data analysis: State-of-the-art and future challenges. Nature Neuroscience 7, 456–461 (2004)CrossRefGoogle Scholar
  6. 6.
    Bullmore, E., Sporns, O.: Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews: Neuroscience 10, 1–13 (2009)Google Scholar
  7. 7.
    Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction of missing links in networks. Nature 453, 98–101 (2008)CrossRefGoogle Scholar
  8. 8.
    Clauset, A., Moore, C., Newman, M.E.J.: Structural Inference of Hierarchies in Networks. In: Statistical Network Analysis: Models, Issues, and New Directions, pp. 1–13. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks. Journal of Modern Physics 80(4), 1275–1335 (2008)CrossRefGoogle Scholar
  10. 10.
    Durstewitz, D., Gabriel, T.: Dynamical basis of irregular spiking in NMDA-driven prefrontal cortex neurons. Cerebral Cortex 17, 894–908 (2007)CrossRefGoogle Scholar
  11. 11.
    Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Guimera, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)CrossRefGoogle Scholar
  13. 13.
    Izhikevich, E.M.: Polychronization: Computation with spikes. Neural Computation 18(2), 245–282 (2006)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Larrañaga, P., Lozano, J.A. (eds.): Estimation of Distribution Algorithms. A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Dordrecht (2002)MATHGoogle Scholar
  15. 15.
    Liben-Nowell, D., Kleinberg, J.: The link-prediction problem for social networks. Journal of American Society for Information Science and Technology 58(7), 1019–1031 (2007)CrossRefGoogle Scholar
  16. 16.
    Lichtman, J.W., Livet, J., Sanes, J.R.: A technicolor approach to the connectome. Nature Reviews: Neuroscience 9, 417–422 (2008)CrossRefGoogle Scholar
  17. 17.
    McIntosh, A.R.: Towards a theory of cognition. Neural Networks 13, 861–870 (2000)CrossRefGoogle Scholar
  18. 18.
    Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: Simple building blocks of complex networks. Science 298, 824–827 (2002)CrossRefGoogle Scholar
  19. 19.
    Mühlenbein, H., Paaß, G.: From recombination of genes to the estimation of distributions I. Binary parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  20. 20.
    Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo (1988)Google Scholar
  21. 21.
    Rao, R.P.N.: Neural models of Bayesian belief propagation. In: Bayesian Brain. Probabilistic Approaches to Neural Coding, pp. 239–267. MIT Press, Cambridge (2007)Google Scholar
  22. 22.
    Rolfe, J.T.: The cortex as a graphical model. Master’s thesis, Computation and Neural Systems, California Institute of Technology (2006)Google Scholar
  23. 23.
    Rykhlevskaia, E., Gratton, G., Fabiani, M.: Combining structural and functional neuroimaging data for studying brain connectivity: A review. Psychophysiology 45, 173–187 (2008)CrossRefGoogle Scholar
  24. 24.
    Sajda, P., Baek, K., Finkel, L.: Bayesian networks for modeling cortical integration. In: Akay, M. (ed.) Handbook of Neural Engineering, pp. 585–600. Wiley Press, Chichester (2007)Google Scholar
  25. 25.
    Santana, R., Bielza, C., Lozano, J.A., Larrañaga, P.: Mining probabilistic models learned by EDAs in the optimization of multi-objective problems. In: Proceedings of the 11th Annual Genetic and Evolutionary Computation Conference GECCO 2009, pp. 445–452. ACM, New York (2009)CrossRefGoogle Scholar
  26. 26.
    Santana, R., Larrañaga, P., Lozano, J.A.: Interactions and dependencies in estimation of distribution algorithms. In: Proceedings of the 2005 Congress on Evolutionary Computation CEC 2005, Edinburgh, UK, pp. 1418–1425. IEEE Press, Los Alamitos (2005)CrossRefGoogle Scholar
  27. 27.
    Santana, R., Larrañaga, P., Lozano, J.A.: Evolving optimized brain networks topologies using multi-objective evolutionary computation (submmitted for publication 2010)Google Scholar
  28. 28.
    Santana, R., Mendiburu, A., Lozano, J.A.: An empirical analysis of loopy belief propagation in three topologies: Grids, small-world networks and random graphs. In: Jaeger, M., Nielsen, T.D. (eds.) Proceedings of the Fourth European Workshop on Probabilistic Graphical Models (PGM 2008), pp. 249–256 (2008)Google Scholar
  29. 29.
    Sporns, O., Kötter, R.: Motifs in brain networks. PLoS Biology 2(11), e369 (2004)CrossRefGoogle Scholar
  30. 30.
    Watts, D.J., Strogatz, S.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)CrossRefGoogle Scholar
  31. 31.
    Yanover, C., Weiss, Y.: Approximate inference and protein-folding. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15, pp. 1457–1464. MIT Press, Cambridge (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Roberto Santana
    • 1
  • Concha Bielza
    • 1
  • Pedro Larrañaga
    • 1
  1. 1.Departamento de Inteligencia ArtificialUniversidad Politécnica de MadridBoadilla del Monte, MadridSpain

Personalised recommendations