Effect of Semantic Differences in WordNet-Based Similarity Measures

  • Raúl Ernesto Menéndez-Mora
  • Ryutaro Ichise
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6097)


Assessing the semantic similarity of words is a generic problem in many research fields such as artificial intelligence, biomedicine, linguistics, cognitive science and psychology. The difficulty of this task lies in how to find an effective way to simulate the process of human judgement of word similarity. In this paper, we introduce the idea of semantic differences and commonalities between words to the similarity computation process. Five new semantic similarity metrics are obtained after applying this scheme to traditional WordNet-based measures. In an experimental evaluation of our approach on a standard 28 word pairs dataset, three of the measures outperformed their classical version, while the other two performed as well as their unmodified counterparts.


WordNet Measures Semantic Similarity Featured Based Similarity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Budanitsky, A., Hirst, G.: Semantic distance in wordnet: An experimental, application-oriented evaluation of five measures. In: Workshop on WordNet and Other Lexical Resources, 2nd Meeting of the North American Chapter of the Association for Computational Linguistics (2001)Google Scholar
  2. 2.
    Fellbaum, C. (ed.): Wordnet: An Electronic Lexical Database, 1st edn. Bradford Books (1998)Google Scholar
  3. 3.
    Hai, J., Hanhua, C.: Semrex: Efficient search in a semantic overlay for literature retrieval. Future Generation Computer Systems 11(6), 475–488 (2008)Google Scholar
  4. 4.
    Hliaoutakis, A., Varelas, G., Voutsakis, E., Petrakis, E.G.M., Milios, E.E.: Information retrieval by semantic similarity. Int. Journal on Semantic Web and Information Systems (IJSWIS) 2(3), 55–73 (2006)CrossRefGoogle Scholar
  5. 5.
    Jiang, J.J., Conrath, D.W.: Semantic similarity based on corpus statistics and lexical taxonomy. In: Int. Conf. on Research in Computational Linguistics, pp. 19–33 (1997)Google Scholar
  6. 6.
    Leacock, C., Chodorow, M.: Combining local context and wordnet similarity for word sense identification. In: WordNet: A Lexical Reference System and its Application, pp. 265–283 (1998)Google Scholar
  7. 7.
    Li, Y., Bandar, Z.A., McLean, D.: An approach for measuring semantic similarity between words using multiple information sources. IEEE Transactions on Knowledge and Data Engineering 15(4), 871–882 (2003)CrossRefGoogle Scholar
  8. 8.
    Lin, D.: An information-theoretic definition of similarity. In: 15th Int. Conf. on Machine Learning, pp. 296–304 (1998)Google Scholar
  9. 9.
    Mazuel, L., Sabouret, N.: Semantic relatedness measure using object properties in an ontology. In: Sheth, A.P., Staab, S., Dean, M., Paolucci, M., Maynard, D., Finin, T., Thirunarayan, K. (eds.) ISWC 2008. LNCS, vol. 5318, pp. 681–694. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Miller, G., Charles, W.: Contextual correlates of semantic synonymy. Languages and Cognitive Processes 6(1), 1–28 (1991)CrossRefGoogle Scholar
  11. 11.
    Pirró, G., Seco, N.: Design, implementation and evaluation of a new semantic similarity metric combining features and intrinsic information content. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS, vol. 5332, pp. 1271–1288. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of a metric on semantic nets. IEEE Transactions on Systems, Man, and Cybernetics 19(1), 17–30 (1989)CrossRefGoogle Scholar
  13. 13.
    Resnik, P.: Using information content to evaluate semantic similarity in a taxonomy. In: Int. Joint Conf. on Artificial Intelligence, vol. 14(1), pp. 448–453 (1995)Google Scholar
  14. 14.
    Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and its application to problems of ambiguity in natural language. Artificial Intelligence Research 11, 95–130 (1999)zbMATHGoogle Scholar
  15. 15.
    Rubenstein, H., Goodenough, J.B.: Contextual correlates of synonymy. Communications of ACM 8(10), 627–633 (1965)CrossRefGoogle Scholar
  16. 16.
    Seco, N.: Computational models of similarity in lexical ontologies. Master’s thesis, University College Dublin (2005)Google Scholar
  17. 17.
    Tversky, A.: Features of similarity. Psycological Review 84(4), 327–352 (1977)CrossRefGoogle Scholar
  18. 18.
    Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: 32nd Annual Meeting of the Association for Computational Linguistics, pp. 133–138 (1994)Google Scholar
  19. 19.
    Ziegler, C.-N., Simon, K., Lausen, G.: Automatic computation of semantic proximity using taxonomic knowledge. In: 15th ACM Int. Conf. on Information and Knowledge Management, pp. 465–474 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Raúl Ernesto Menéndez-Mora
    • 1
    • 2
  • Ryutaro Ichise
    • 1
  1. 1.National Institute of InformaticsTokyoJapan
  2. 2.Facultad de Informática y MatemáticaUniversidad de HolguínPiedra Blanca, HolguínCuba

Personalised recommendations