Mining Association Rules from Semantic Web Data

  • Victoria Nebot
  • Rafael Berlanga
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6097)

Abstract

The amount of ontologies and semantic annotations available on the Web is constantly increasing. This new type of complex and heterogeneous graph-structured data raises new challenges for the data mining community. In this paper, we present a novel method for mining association rules from semantic instance data repositories expressed in RDF/S and OWL. We take advantage of the schema-level (i.e. Tbox) knowledge encoded in the ontology to derive just the appropriate transactions which will later feed traditional association rules algorithms. This process is guided by the analyst requirements, expressed in the form of a query pattern. Initial experiments performed on real world semantic data enjoy promising results and show the usefulness of the approach.

Keywords

Semantic Web Data Mining Instance Data Association Rules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Buitelaar, P., Cimiano, P., Magnini, B. (eds.): Ontology Learning from Text: Methods, Evaluation and Applications. Frontiers in Artificial Intelligence and Applications, vol. 123. IOS Press, Amsterdam (2005)Google Scholar
  2. 2.
    Muggleton, S., Raedt, L.D.: Inductive logic programming: Theory and methods. J. Log. Program 19/20, 629–679 (1994)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Lisi, F.A., Esposito, F.: Mining the Semantic Web: A logic-based methodology. In: Hacid, M.-S., Murray, N.V., Raś, Z.W., Tsumoto, S. (eds.) ISMIS 2005. LNCS (LNAI), vol. 3488, pp. 102–111. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Hartmann, J., Sure, Y.: A knowledge discovery workbench for the Semantic Web. In: Workshop on Mining for and from the Semantic Web at the ACM SIGKDD (August 2004)Google Scholar
  5. 5.
    Bloehdorn, S., Sure, Y.: Kernel methods for mining instance data in ontologies. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L.J.B., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC 2007 and ISWC 2007. LNCS, vol. 4825, pp. 58–71. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  6. 6.
    Dánger, R., Ruiz-Shulcloper, J., Llavori, R.B.: Objectminer: A new approach for mining complex objects. In: ICEIS (2), pp. 42–47 (2004)Google Scholar
  7. 7.
    Rodríguez-González, A.Y., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ruiz-Shulcloper, J.: Mining frequent similar patterns on mixed data. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 136–144. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Chi, Y., Muntz, R.R., Nijssen, S., Kok, J.N.: Frequent subtree mining - an overview. Fundam. Inform. 66(1-2), 161–198 (2005)MathSciNetMATHGoogle Scholar
  9. 9.
    Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: Cercone, N., Lin, T.Y., Wu, X. (eds.) ICDM, pp. 313–320. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  10. 10.
    Kiefer, C., Bernstein, A., Locher, A.: Adding data mining support to SPARQL via statistical relational learning methods. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 478–492. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Kochut, K., Janik, M.: SPARQLeR: Extended SPARQL for semantic association discovery. In: Franconi, E., Kifer, M., May, W. (eds.) ESWC 2007. LNCS, vol. 4519, pp. 145–159. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: SIGMOD Conference, pp. 207–216. ACM Press, New York (1993)Google Scholar
  13. 13.
    Nebot, V., Llavori, R.B.: Efficient retrieval of ontology fragments using an interval labeling scheme. Inf. Sci. 179(24), 4151–4173 (2009)CrossRefGoogle Scholar
  14. 14.
    Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB, pp. 487–499. Morgan Kaufmann, San Francisco (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Victoria Nebot
    • 1
  • Rafael Berlanga
    • 1
  1. 1.Universitat Jaume ICastellón de la PlanaSpain

Personalised recommendations